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1. Motivation

Modern high performance microprocessors suffer poor energy
efficiency due to complex front-end instruction overheads [3].
Out-of-order architectures can exploit instruction level paral-
lelism (ILP) but require expensive hardware structures that
rename registers and reorder instructions to aggressively issue
multiple instructions per cycle. As hardware accelerators take
the spotlight in industry and research, general-purpose proces-
sor architecture has largely remained stagnant for decades.

This paper proposes DiAG, a novel, energy efficient CPU
microarchitecture that accomplishes three main goals: 1. Dy-
namically extracting ILP with little control overhead. We do
so by transparently constructing dataflow graphs (DFGs) of
the running program in hardware. 2. Exploiting instruction
reuse [8], such as loop iterations or commonly used functions.
The datapaths we constructed before can be reused at no cost,
eliminating the need for fetching and decoding the same in-
structions. 3. Using thread-level pipelining to exploit data
level parallelism (DLP). Identical threads running in parallel
can share the same datapath by pipelining its functional units.
We achieve these goals while maintaining generality and trans-
parency to software. DiAG processors are plug-and-play: they
can support existing ISAs (we use RISC-V) without requir-
ing special extensions, compilers, or libraries. Though DiAG
works standalone, it can also be enhanced with ISA extensions
and further compiler support.

2. Limitations of the State of the Art

We focus on dataflow architectures in this section, comparisons
to similar superscalar techniques are in Section 3 of the paper.
In general, a dataflow processor spatially maps a program’s
DFG onto a planar grid of processing elements (PEs). DIAG
addresses two important limitations of past works:

1. Granularity of control. Most dataflow architectures can-
not fully handle control flow changes at the instruction level.
They use compilers to break down a program into control-free
sequences of code, e.g. ‘blocks’ in TRIPS [6] or ‘waves’ in
Wavescalar [9]. These sequences are then mapped and ex-
ecuted block-wise in hardware. As a result, supporting an
arbitrary branch instruction or precise interrupts is difficult to
realize. DiAG does not decompose the program into subgraphs
and handles all control flow changes at the instruction level. It
supports precise interrupts and speculative execution fully
(e.g. even if all instructions in a program are branches).

2. General compatibility. Most dataflow architectures re-
quire special instruction sets and/or compilers and/or software

libraries to work with the hardware [6, 7, 4, 9, 2, 5]. Thus,
there is a high barrier to adoption as existing binaries for
commonly used ISAs must all be recompiled to work on the
platform. Furthermore, control limitations in 1. only make
it more difficult to run all types of applications. DiAG dif-
fers from past dataflow works in that instructions are mapped
in program order but execute out-of-order as shown in Fig-
ure 1. Register lanes described in the next section construct the
DFG dynamically and completed instructions retire in-order.
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Figure 1: (Left) In DiAG, instructions are assigned in program
order to PEs, register lanes form the DFG dynamically. (Right)
In dataflow archs, the DFG is mapped to a mesh of PEs.

3. Key Insights

The DiAG architecture is designed based on three key insights:
1. Transparent dataflow execution. We can easily build the
program’s DFG in hardware as shown in Figure 2. We extend
the register file into lanes, which are 32-bit wires (for 32-bit
ISAs) along with a valid bit for each register. Rather than con-
structing the DFG explicitly, we assign program instructions
in-order to a row of processing elements (PEs). Each PE reads
its assigned instruction’s source operands from the register
lanes and writes its output to the destination lane. Observe that
a flattened DFG naturally arises in Figure 2(c) since register
lanes essentially forward all values from producer to consumer
instructions. PEs begin executing as soon as their operands
are valid (in out-of-order fashion) and the example program
completes in the same 3 cycle latency as the original DFG.

2. Branches and instruction reuse. The DFGs we built from
register lanes in 1. can be reused (e.g. loop iterations) to
avoid re-fetching and decoding the same instructions. This is
automatically done by backward branches in the program. To
support branches and jumps, we dedicate a PC lane that carries
the program counter through each PE much like register lanes.
Since instructions are assigned in-order, each PE checks its
instruction address against the input PC, then increments the
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Figure 2: Dataflow execution of a program with five instructions. Instruction assigned to functional units in program order
implicitly constructs the flattened dataflow graph of the program, i.e. the DFG in (A) and (B) are identical.

output PC by a word if matched, otherwise the PE is disabled
and does not modify the PC lane. When a branch or interrupt
occurs at instruction i, the PC is changed to the target address
and subsequent instructions at i+ 1,7+ 2, ... will no longer
match and these PEs are effectively flushed, allowing only
prior instructions to write and store values. Since PEs are in-
order, they serve the same role as the reorder buffer to commit
changes. Figure 3 is a simplified high-level diagram of a DiIAG
processor, PEs are grouped into clusters that buffer register
lanes and share load-store units.

3. Temporal parallelism. If multiple identical threads can
execute concurrently, we pipeline the threads at the granularity
of clusters to exploit DLP.
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Figure 3: DiAG High-level Architecture.
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4. Main Artifacts

We implement a DiAG processor prototype that supports the
RISC-V 32-bit ISA (RV32IMF) in SystemVerilog. Multiple
configurations of this processor with 32 to 512 PEs are synthe-
sized with commercial EDA tools to evaluate hardware area,
timing, and power. We also demonstrate the processor running
bare metal RISC-V programs on a Xilinx VC709 FPGA board.
Additionally, we apply custom RISC-V instruction extensions
to support thread pipelining.

5. Key Results and Contributions

We use RTL simulation to evaluate DiAG configurations with

up to 512 PEs in the Rodinia benchmark suite [1].

e Against a simulated 12 core 8-issue OoO ARM proces-
sor with normalized frequency, a 512 PE DiAG processor

achieves a mean 1.15x single-thread perf., 1.31x multi-
thread perf. (with TLP and DLP), and 1.77 x improvement
in energy efficiency.

e Synthesis results on a 45nm library show that DiAG uses
significant hardware area (88mm? for 512 PEs), but a small
fraction is dynamically active.

DiAG presents a dataflow-based alternative to the conventional

out-of-order parch that heavily improves energy efficiency in

compute-centric applications at the cost of higher chip area.

6. Why ASPLOS

Although we present DiAG as a work of specialized CPU
microarchitecture, our results show that compiler assistance
to enable thread-level pipelining is valuable to unlock its full
potential. Our philosophy is that a novel architecture like
DiAG must first meet baseline support for a standard ISA
and existing code, which is important to commercial adoption.
Once satisfied, it delivers additional optimization methods
through compiler support and software libraries. We believe
that DiAG is a suitable work for the ASPLOS audience.

7. Citation for Most Influential Paper Award

DiAG is a general-purpose processor architecture that dynami-
cally and transparently builds a reuseable dataflow graph of the
executing program in hardware. It emerges as a novel alterna-
tive to the longstanding out-of-order model, reducing control
overheads and bridging the energy efficiency gap between
CPU and accelerator for compute-centric applications.

8. Revisions

Architecture: Added improved support for speculative exe-
cution and precise interrupts. Register lanes are now buffered
once in a cluster rather than at each PE, sharply reducing area
with little performance impact. Evaluation: Added sections
for hardware area and timing analysis to address previously
raised concerns on area cost and feasibility. We also improve
the accuracy of simulations to model performance. Paper:
A proper related works section is added that distinguishes
DiAG from past dataflow works. Architecture and evaluation
sections are expanded with new results and details.
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