
PTEMagnet: Fine-grained Physical Memory Reservation
for Faster Page Walks in Public Clouds

Extended Abstract

Artemiy Margaritov, Dmitrii Ustiugov, Amna Shahab, and Boris Grot
University of Edinburgh

1. Motivation

Cloud computing offers great flexibility through on-demand
resource scaling, high resource utilization and low operating
costs. Businesses deploy their services in the public cloud in
order to enjoy these benefits as reflected in the global cloud
computing market growing from $350 billion in 2020 to an an-
ticipated $800 billion by 2025 [6]. To ensure safety, isolation
and to hide the complexity of managing physical machines,
cloud resources operate under virtualization and rent virtual
machines (VMs) to cloud users.

The applications that commonly run in the cloud, such as
data analytics frameworks, key-value stores, and databases,
operate on massive – and continually expanding – in-memory
datasets. The large footprint of the datasets pushes beyond
TLB reach and, together with irregular memory access pat-
terns, reduces the efficacy of the processor TLBs, resulting in
frequent TLB misses. Each TLB miss triggers a page walk – a
long pointer chase through the page table (PT). When operat-
ing under virtualization, a page walk requires traversing both
the guest and host PTs (i.e., a nested page walk) thereby in-
curring a particularly high latency as noted by prior works [5].
The nested page walk latency is further amplified when multi-
ple applications are colocated within a single VM.

With rapid adoption of cloud computing for data-intensive
tasks, the performance cost of address translation is destined
to increase in the future. These observations highlight the
need to reduce the page walk latency of big-data applications
running in public clouds.

2. Limitations of the State of the Art

Prior attempts at accelerating address translation are either
disruptive [3, 1, 9, 8] – requiring a radical re-engineering of
the virtual memory subsystem – or incremental to the existing
mechanisms [5]. While attractive from a performance perspec-
tive, the disruptive approach entails a major overhaul of the
virtual memory subsystem, which presents an onerous path
to adoption. Incremental approaches, such as TLB coalesc-
ing [7], enable greater TLB reach but are ultimately limited
by latency and capacity constraints of TLB structures. Trans-
lation prefetching [5] uses software support and light-weight
hardware to shorten the latency of traversing both the guest
and host PTs. However, it requires architectural and microar-
chitectural modifications, which impedes rapid adoption.

Figure 1: Contiguity (or lack of it) in virtual and physical ad-
dress spaces under virtualization.

3. Key Insights
In this work, we investigate which accesses in a nested page
walk are most significant for the overall latency by examining
from where in the memory hierarchy these accesses are served.
We observe that while accesses to the guest PT are often served
by higher levels of the memory hierarchy (closer to the core), a
significant fraction of accesses to host PT levels are served by
the main memory, which results in long latencies in the nested
page walk. We study the discrepancy in behaviour of accesses
to the guest and host PTs and find that cache behaviour (hit or
miss) of page walks is defined by spatial locality of page table
entries (PTEs) that reside in the leaf PT level, which dominates
the overall PT footprint. While guest PTEs corresponding to
nearby virtual addresses reside in the same cache block, host
PTEs corresponding to these guest virtual addresses are often
scattered among multiple cache blocks.

Why are PTEs scattered? To understand why PTEs may
reside in different cache blocks, let’s consider a simple case
where applications are running natively. A PT is indexed
through virtual addresses, where the PTEs for two adjacent
virtual pages A and A+1 sit in neighbouring leaf nodes and
within the same cache block. While the A and A+1 are ad-
jacent in virtual address space, their virtual-to-physical map-
pings are determined by the memory allocator. If the memory
allocator is allocating memory for a single application, adja-
cent virtual pages are likely to be mapped to adjacent physical
pages, carrying over their spatial locality to physical address
space. However, if the memory allocator is allocating memory
for multiple applications, the allocations for virtual pages A
and A+1 may be interleaved by memory allocation requests
for co-running application(s). In this case, A and A+1 are un-



likely to be mapped to adjacent physical pages and their spatial
locality is lost in the physical address space. In the worst case,
a set of pages that are contiguous in the virtual space may be
allocated to physical pages that are entirely non-contiguous.
This results in application’s memory being fragmented in the
physical address space.

Under virtualization, when the memory allocator in a VM
is stressed by colocated applications, each individual appli-
cation’s memory is fragmented in the guest OS’s physical
address space. The host OS deals with the VM like another
process and treats the guest physical address space as the VM
process’ virtual memory. Problematically, the fragmentation
in the guest physical memory carries over to the host virtual
memory (see Figure 1). Guest virtual pages A and A+1 which
were mapped to non-adjacent guest physical pages will now
be non-adjacent in host virtual address space. As a result, they
will not occupy neighbouring PTEs in the host page table, and
will not reside in the same cache block. This increases the
footprint of the host page table nodes corresponding to each
application running inside the VM.

Our main insight is that fragmentation of guest physical
memory under virtualization and colocation inside the same
VM can significantly increase page walk latency and degrade
application performance.

4. Main Artifacts

We introduce PTEMagnet, a legacy-preserving software-only
technique to reduce page walk latency in cloud environments
by improving locality of host PTEs. Cache locality of host
PTEs can be improved by limiting memory fragmentation in
the guest OS. We show that prohibiting memory fragmentation
within a small contiguous region greatly increases locality for
host PTEs. PTEMagnet uses this observation and employs a
custom guest OS memory allocator which prohibits fragmen-
tation within small virtual address regions mapped to guest
physical address space. PTEMagnet improves locality of the
host PTEs and accelerates nested page walks.

Based on this insight, we propose PTEMagnet – a
reservation-based approach to prevent fragmentation. To de-
termine the optimal reservation granularity, we note that a 64B
cache block can fit a maximum of 8 host PTEs, assuming an
8-bytes PTE, typical for x86. The 8 adjacent host PTEs repre-
sent a contiguous 8*4KB=32KB memory region in the VM’s
virtual memory and, in turn, the guest OS’s physical memory.
We find that by prohibiting fragmentation in each 32KB guest
physical memory region, host PTEs can enjoy the benefits of
maximum spatial locality from a cache block. PTEMagnet
deploys a custom OS memory allocator that, on the first page
fault to a given 32KB region, allocates the full 32KB (8 pages)
but returns only 4KB (1 page) to an application, keeping the
rest reserved for later use. On subsequent page faults within
a reserved region, PTEMagnet’s custom allocator instantly
returns the already-reserved memory to the application.

Methodology We prototype PTEMagnet in Linux kernel
v4.19 and evaluate its performance improvement on real hard-
ware.1 As a metric of performance, we directly measure appli-
cation execution time. In addition, we quantify PTEMagnet’s
ability to reduce the number of page walk cycles. We study
a set of diverse applications that are representative of those
run in the cloud and that exhibit significant TLB pressure. We
assume public cloud deployment (as with Amazon or Google
VPCs [2, 4]) where multiple applications are scheduled on a
fleet of VMs, and use QEMU/KVM for virtualized execution.

5. Key Results and Contributions

• We observe that under virtualization and colocation, page
walks within the host PT incur 4.4× more cache misses
than page walks within the guest PT.

• We show that the guest OS memory allocator, when operat-
ing under colocation, fragments the guest physical memory
across the colocated applications. This results in host PTEs
corresponding to each application being scattered over mul-
tiple cache blocks. For pagerank colocated with memory-
intensive co-runners, the stressed guest OS memory alloca-
tor fragments over 63% of pagerank’s contiguous memory
regions, scattering their host PTEs over many cache blocks.

• We propose PTEMagnet, a software-only technique that
prevents scattering host PTEs across multiple cache blocks
by prohibiting fragmentation within small memory regions
using a reservation-based allocation approach.

• We demonstrate that PTEMagnet achieves 4% performance
improvement on average (9% max) for big-memory ap-
plications sharing a VM with other workloads. Critically,
applications that do not benefit from PTEMagnet are never
slowed down by it, making PTEMagnet broadly attractive
for cloud deployment.

6. Why ASPLOS

Our work focuses on the interaction of system-level tech-
nologies (address translation, virtualization and memory al-
location) with hardware caches. The proposed mechanism,
PTEMagnet, improves caching efficiency of host page tables
entries through an OS memory allocator that enhances conti-
guity within small regions of physical memory.

7. Citation for Most Influential Paper Award

For showing that the OS memory allocator directly affects
page walk latency, and for introducing an overhead-free OS
memory allocator for accelerating page walks in public clouds.

1The code is available at https://github.com/amargaritov/

PTEMagnet_AE

2

https://github.com/amargaritov/PTEMagnet_AE
https://github.com/amargaritov/PTEMagnet_AE


References
[1] Hanna Alam, Tianhao Zhang, Mattan Erez, and Yoav Etsion. Do-It-

Yourself Virtual Memory Translation. In Proceedings of the 44th Inter-
national Symposium on Computer Architecture (ISCA), pages 457–468,
2017.

[2] Amazon. AWS virtual private cloud. Available at https://aws.
amazon.com/vpc.

[3] Arkaprava Basu, Jayneel Gandhi, Jichuan Chang, Mark D. Hill, and
Michael M. Swift. Efficient virtual memory for big memory servers. In
Proceedings of the 40th International Symposium on Computer Archi-
tecture (ISCA), pages 237–248, 2013.

[4] Google Cloud. Virtual Private Cloud. Available at https://cloud.
google.com/vpc.

[5] Artemiy Margaritov, Dmitrii Ustiugov, Edouard Bugnion, and Boris
Grot. Prefetched Address Translation. In Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO),
pages 1023–1036, 2019.

[6] MarketsandMarkets. Cloud Computing Market Report, 2020. Avail-
able at https://www.marketsandmarkets.com/Market-Reports/
cloud-computing-market-234.html.

[7] Binh Pham, Viswanathan Vaidyanathan, Aamer Jaleel, and Abhishek
Bhattacharjee. CoLT: Coalesced Large-Reach TLBs. In Proceedings of
the 45th Annual IEEE/ACM International Symposium on Microarchitec-
ture (MICRO), pages 258–269, 2012.

[8] Dimitrios Skarlatos, Apostolos Kokolis, Tianyin Xu, and Josep Torrellas.
Elastic cuckoo page tables: Rethinking virtual memory translation for
parallelism. In Proceedings of the Twenty-Fifth International Conference
on Architectural Support for Programming Languages and Operating
Systems, pages 1093–1108, 2020.

[9] Idan Yaniv and Dan Tsafrir. Hash, Don’t Cache (the Page Table). In
Proceedings of the 2016 ACM SIGMETRICS International Conference
on Measurement and Modeling of Computer Systems, pages 337–350,
2016.

3

https://aws.amazon.com/vpc
https://aws.amazon.com/vpc
https://cloud.google.com/vpc
https://cloud.google.com/vpc
https://www.marketsandmarkets.com/Market-Reports/cloud-computing-market-234.html
https://www.marketsandmarkets.com/Market-Reports/cloud-computing-market-234.html

	Motivation
	Limitations of the State of the Art
	Key Insights
	Main Artifacts
	Key Results and Contributions
	Why ASPLOS
	Citation for Most Influential Paper Award

