
Scalable FSM Parallelization via Path Fusion and Higher-Order Speculation

Junqiao Qiu∗1, Xiaofan Sun2, Amir Hossein Nodehi Sabet2, and Zhijia Zhao2

1Michigan Technological University, 2University of California, Riverside

1. Motivation

As a basic computation model, finite-state machine (FSM)
embodies a variety of important applications, ranging from
intrusion detection [21, 11, 18, 3] and data decoding [10, 17]
to motif searching [16, 4], rule mining [19], and textual data
analytics [13, 6, 5]. Unfortunately, the execution of an FSM is
known to be “embarrassingly sequential” [2, 23], due to the
inherent dependences among state transitions – in each state
transition, the current state always depends on the prior state 1.
These state dependences fundamentally limit the performance
of FSM-based computations on modern processors, where
parallelism plays an increasingly critical role.

2. State of The Art

To address the inherent dependences in FSM computations,
prior work [7, 9, 23, 12, 22, 14, 15] has mainly followed two
basic parallelization schemes: state enumeration and state
speculation (see Figure 1-b). Assume the input to an FSM
(e.g., a binary sequence) is partitioned evenly into two chunks,
as shown in Figure 1-a. Due to the dependences among state
transitions, the starting state for the second chunk would be
unknown, until the first chunk has been processed – the ending
state of the first chunk is the starting state of the second chunk.
To process the two chunks in parallel, one can choose:
(i) State Enumeration. As the unknown starting state must

be one of the states in the FSM, we can enumerate all of
them by forking an execution path for each state [7, 12].
Obviously, maintaining all the execution paths may bring
significant overhead. To reduce it, prior work [12] checks
if some paths transition to the same state, known as path
merging, in which case only one of them needs to be kept.
However, the effectiveness of this approach highly depends
on the state convergence property of the FSM. When some
of the execution paths exhibit slow convergence or fail to
converge, the overhead of this scheme would be high.

(ii) State Speculation. Instead of considering all the states, one
can guess the starting state of the second chunk [23, 22,
14, 15]. To ensure correctness, the predicted state must be
validated against the ending state of the prior chunk – the
ground truth. If the validation fails (i.e., misspeculation),
the chunk needs to be reprocessed. However, when the
input is partitioned into multiple chunks, the ending state
of the prior chunk may not be the ground truth until its own
speculation has been validated (with needed reprocessing).

∗This work was performed when the author was a Ph.D. student at UCR.
1Here, an FSM refers to a deterministic finite automaton (DFA).

State Enumeration
[7, 12]

State Speculation
[14, 15, 22, 23]

Solution
(this work)

Dependence
Handling

Fork an execution
path for each state

Execute speculatively
from a predicted state

Issue Maintaining multiple paths Sequential validations

Higher-Order SpeculationPath Fusion

Scheme Selection

Partitioned Input:
… ?

(a) State Dependence

State Transitions:

(b) Two Basic Parallelization Schemes

chunk_0 chunk_1

0 1 0 1 0 … 0 1 1 1 1 0 1 0 1 0 0 0 0 1 …

Figure 1: FSM Parallelization: Challenges and Solutions

These serialized validations form a fundamental scalability
bottleneck in the speculative FSM parallelization [15].

In addition, a hybrid scheme may enumerate a subset of
states [8, 20], which makes a tradeoff between the limitations
of both schemes. In summary, the existing FSM parallelization
schemes face fundamental scalability challenges.

3. Major Contributions
This work introduces two novel techniques: path fusion and
higher-order speculation, to address the scalability challenges
in the two basic FSM parallelization schemes, respectively.

3.1. Path Fusion

For state enumeration, we propose to fuse different execution
paths into a single path to lower down the overhead.
Intuition. An interesting observation we made is that state
enumeration suffers from a similar kind of inefficiency as
the execution of nondeterministic finite automaton (NFA).
The former needs to maintain a vector of states for all the
execution paths, while the latter needs to track a subset of
active states. A well-known solution to the inefficiency of
NFA execution is to convert the NFA to an equivalent DFA
(deterministic finite automaton) using the subset construction
algorithm [1]. Can we design a similar technique to address
the inefficiency in state enumeration? In fact, we find that,
by developing a vector construction algorithm similar to the
subset construction algorithm, we can generate a new FSM
whose single execution path mimics multiple execution paths
of the original FSM. We call this technique path fusion.
Static Path Fusion. The key to path fusion is to construct a
fused FSM where each state corresponds to a vector of states

in the original FSM. Like NFA to DFA conversion [1], we can
statically construct the fused FSM. First, we map the initial
fused state to state vector [S0,S1, · · · ,SN] which corresponds
to the enumerated execution paths. Then, we feed every input
symbol to the existing fused states to iteratively discover new
fused states and valid fused state transitions, until no new
fused states can be found. In theory, the fused FSM can be
very large as it traverses a space of NN , where N is the size of
the original FSM. However, in practice, their sizes are often
well below N3 and even N2. Despite the promises, it might still
be desired that the fused FSM can fit into a memory budget.

Dynamic Path Fusion. Unlike static path fusion which builds
the entire fused FSM for all possible inputs, dynamic path
fusion constructs a partial fused FSM that only consists of
states and transitions for a single input. The idea of dynamic
path fusion resembles the just-in-time (JIT) compilation used
in modern compilers. It consists of two execution modes: the
basic mode where different paths are enumerated and fused
state transitions are generated, and the fused mode which only
makes fused state transitions. An execution starts from the
basic mode, then switches between the two modes based on
the availability of the fused state transitions.

3.2. Higher-Order Speculation

To address the serial validation bottleneck in state speculation,
we introduce the concept of speculation order.

Speculation Order. Formally, we denote the speculation at
the beginning of input chunk_i as:

SPEC(i,S,C) (1)
where S is the predicted starting state and C is the correct
starting state, also referred to as the correctness criterion. By
feeding a speculated correctness criterion to the speculation,
we can raise the speculation to higher orders. For example,

SPECk+1(i,S,C)
validate−−−−→ SPECk(i,C,C′) (2)

means that a k+ 1-th order speculation, after its validation,
becomes a k-th order speculation. The correctness criterion of
the former becomes the predicted state of the latter.

Based on the above formalization, it is not hard to find
that all prior FSM speculation techniques [9, 23, 22, 14, 15],
in fact, belong to first-order speculation, as the correctness
criteria used in their validations are always non-speculative.

Benefits of Higher-Order Speculation. Raising the order of
speculation may bring benefits in two aspects:

• Chunks with higher-order speculation no longer need to
wait for the ground truth, thus can be validated earlier;
• The validation of higher-order speculation introduces a

new speculated state which, in theory, is more likely to the
correct starting state, thus improving the accuracy.

Iterative Speculation. Based on the above findings, we design
a higher-order iterative speculation scheme which organizes

Table 1: Speedup Comparison
(Baseline: sequential execution; #threads: 64; input size: 4×108)

Basic Schemes Augmented Schemes
FSM Seq(s) B-Enum B-Spec S-Fusion D-Fusion H-Spec BoostFSM
M1 7.45 13.7 1.9 30.9 25.1 17.8 30.9
M2 7.48 29.1 20 - 19.6 32.6 32.6
M3 7.39 14.2 1.4 30.8 25.1 18.3 30.8
M4 7.43 11.1 0.6 31.1 25.5 13.9 31.1
M5 7.43 28.5 22.9 - 13.1 30.1 30.1
M6 7.57 26.9 21.6 - 16.1 32.6 32.6
M7 7.49 29.8 29.7 - 25.5 32.7 32.7
M8 7.46 13.0 39.8 30.9 24.9 39.2 39.8
M9 7.44 11.6 0.6 - 23.9 10.4 23.9
M10 7.37 7.3 1.9 - 8.5 13.0 7.3
M11 7.47 12.9 0.6 31.2 23.6 17.6 31.2
M12 7.53 12.9 0.5 - 3.6 8.7 12.9
M13 7.40 12.2 0.6 - 22.5 16.7 22.5
M14 7.46 12.7 0.9 - 23.5 11.2 23.5
M15 7.35 13.0 0.6 - 23.4 17.1 23.4
M16 7.51 19.3 37.2 - 17.9 36.5 37.2
Geo - 15.4 3.1 31.0 18.3 19.5 25.8

the FSM computations into a series of iterations, gradually
improving the speculation in a naturally parallel manner.

3.3. Scheme Selection

Together, we consider five FSM parallelization schemes:
• B-Enum: basic state enumeration
• B-Spec: basic state speculation
• S-Fusion: state enumeration with static path fusion
• D-Fusion: state enumeration with dynamic path fusion
• H-Spec: higher-order (iterative) speculation

Which scheme works the best depends on the characteristics
of the FSM and its inputs. We design a set of heuristics, as a
decision tree, to guide the scheme selection.

4. Key Results

We integrated the above FSM parallelization schemes along
with the scheme selector into a multi-scheme parallelization
framework, named BOOSTFSM. Table 1 reports the speedups
of different schemes over the sequential FSM execution on
a 64-core machine. The FSMs are collected from a widely
used open-source network intrusion detection system (Snort),
carrying diverse properties. First, S-Fusion is found feasible
for five FSMs, for which it raises the speedups from 12.9×
(B-Enum) to 31.0× on average. Next, D-Fusion shows vary-
ing speedups, from 3.6× to 25.5×, as its efficiency highly
depends on the skewness of the fused state transitions and
the state vector size. Third, comparing to B-Spec, H-Spec
shows consistent improvements (from 3.1× to 19.5×), thanks
to its two benefits mentioned earlier. Finally, the last column
reports the results of scheme selection. Among 16 FSMs, it
successfully finds the best scheme for 15 FSMs. The failed
case is due to our coarse-grained performance modeling.

5. Why ASPLOS

This work fits ASPLOS for its focus on the parallelization and
scalability of a fundamental class of computations and for its
uses of speculation and compiler techniques.

2

References
[1] Alfred V Aho, Ravi Sethi, and Jeffrey D Ullman. Compilers, principles,

techniques. Addison wesley, 7(8):9, 1986.
[2] Krste Asanovic, Ras Bodik, Bryan Christopher Catanzaro,

Joseph James Gebis, Parry Husbands, Kurt Keutzer, David A Pat-
terson, William Lester Plishker, John Shalf, Samuel Webb Williams,
et al. The landscape of parallel computing research: A view from
berkeley. Technical report, Technical Report UCB/EECS-2006-183,
EECS Department, University of California, Berkeley, 2006.

[3] Matteo Avalle, Fulvio Risso, and Riccardo Sisto. Scalable algorithms
for NFA multi-striding and NFA-based deep packet inspection on
GPUs. IEEE/ACM Transactions on Networking, 24(3):1704–1717,
2015.

[4] Sutapa Datta and Subhasis Mukhopadhyay. A grammar inference
approach for predicting kinase specific phosphorylation sites. PloS
one, 10(4):e0122294, 2015.

[5] Yanlei Diao, Peter Fischer, Michael J Franklin, and Raymond To. Yfil-
ter: Efficient and scalable filtering of XML documents. In Proceedings
18th International Conference on Data Engineering, pages 341–342.
IEEE, 2002.

[6] Todd J Green, Gerome Miklau, Makoto Onizuka, and Dan Suciu.
Processing XML streams with deterministic automata. In International
Conference on Database Theory, pages 173–189. Springer, 2003.

[7] W Daniel Hillis and Guy L Steele Jr. Data parallel algorithms. Com-
munications of the ACM, 29(12):1170–1183, 1986.

[8] Peng Jiang and Gagan Agrawal. Combining SIMD and many/multi-
core parallelism for finite state machines with enumerative speculation.
In Proceedings of the 22nd ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, pages 179–191, 2017.

[9] C. Jones, R. Liu, L. Meyerovich, K. Asanovic, and R. Bodik. Paral-
lelizing the web browser. In HotPar, 2009.

[10] Shmuel Tomi Klein and Yair Wiseman. Parallel Huffman decoding
with applications to JPEG files. The Computer Journal, 46(5):487–497,
2003.

[11] Sailesh Kumar, Sarang Dharmapurikar, Fang Yu, Patrick Crowley, and
Jonathan Turner. Algorithms to accelerate multiple regular expressions
matching for deep packet inspection. In ACM SIGCOMM Computer
Communication Review, volume 36, pages 339–350. ACM, 2006.

[12] Todd Mytkowicz, Madanlal Musuvathi, and Wolfram Schulte. Data-
parallel finite-state machines. In Proceedings of the 19th international
conference on Architectural Support for Programming Languages and
Operating Systems, pages 529–542, 2014.

[13] Yinfei Pan, Ying Zhang, Kenneth Chiu, and Wei Lu. Parallel XML
parsing using meta-DFAs. In e-Science and Grid Computing, IEEE
International Conference on, pages 237–244. IEEE, 2007.

[14] Junqiao Qiu, Zhijia Zhao, and Bin Ren. MicroSpec: Speculation-
centric fine-grained parallelization for FSM computations. In Parallel
Architecture and Compilation Techniques (PACT), 2016 International
Conference on, pages 221–233. IEEE, 2016.

[15] Junqiao Qiu, Zhijia Zhao, Bo Wu, Abhinav Vishnu, and Shuaiwen Leon
Song. Enabling scalability-sensitive speculative parallelization for
FSM computations. In Proceedings of the International Conference on
Supercomputing, ICS ’17, New York, NY, USA, 2017. Association for
Computing Machinery.

[16] Indranil Roy and Srinivas Aluru. Finding motifs in biological se-
quences using the Micron automata processor. In Parallel and Dis-
tributed Processing Symposium, 2014 IEEE 28th International, pages
415–424. IEEE, 2014.

[17] Priti Shankar, Amitava Dasgupta, Kaustubh Deshmukh, and B Sun-
dar Rajan. On viewing block codes as finite automata. Theoretical
Computer Science, 290(3):1775–1797, 2003.

[18] Randy Smith, Cristian Estan, Somesh Jha, and Shijin Kong. Deflating
the big bang: fast and scalable deep packet inspection with extended
finite automata. In ACM SIGCOMM Computer Communication Review,
volume 38, pages 207–218. ACM, 2008.

[19] Ke Wang, Yanjun Qi, Jeffrey J Fox, Mircea R Stan, and Kevin Skadron.
Association rule mining with the Micron automata processor. In Par-
allel and Distributed Processing Symposium (IPDPS), 2015 IEEE
International, pages 689–699. IEEE, 2015.

[20] Yang Xia, Peng Jiang, and Gagan Agrawal. Scaling out speculative
execution of finite-state machines with parallel merge. In Proceedings
of the 25th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, pages 160–172, 2020.

[21] Fang Yu, Zhifeng Chen, Yanlei Diao, TV Lakshman, and Randy H
Katz. Fast and memory-efficient regular expression matching for deep
packet inspection. In Proceedings of the 2006 ACM/IEEE Symposium
on Architecture for Networking and Communications Systems, pages
93–102. ACM, 2006.

[22] Zhijia Zhao and Xipeng Shen. On-the-fly principled speculation for
FSM parallelization. In Proceedings of the Twentieth International
Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’15, page 619–630, New York, NY, USA,
2015. Association for Computing Machinery.

[23] Zhijia Zhao, Bo Wu, and Xipeng Shen. Challenging the “embar-
rassingly sequential”: Parallelizing finite state machine-based com-
putations through principled speculation. In Proceedings of the 19th
International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’14, page 543–558, New
York, NY, USA, 2014. Association for Computing Machinery.

3

	Motivation
	State of The Art
	Major Contributions
	Path Fusion
	Higher-Order Speculation
	Scheme Selection

	Key Results
	Why ASPLOS

