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1. Motivation

Go is a statically typed programming language designed by
Google in 2009 [9]. In recent years, Go has gained increasing
popularity in building software in production environments.
These Go programs range from libraries [3] and command-
line tools [1, 4] to systems software, including container sys-
tems [8, 15], databases [2, 5], and blockchain systems [11].

The major design goal of Go is to provide an efficient and
safe way for developers to write concurrent programs [10]. To
achieve this purpose, it provides lightweight threads (called
goroutines) that can be easily created, and advocates the use
of channels to explicitly pass messages across goroutines,
on the assumption that message-passing concurrency is less
error-prone than shared-memory concurrency supported by
traditional programming languages [16, 17, 40]. In addition,
Go also provides several unique primitives and libraries for
concurrent programming.

Unfortunately, there are still many concurrency bugs in
Go, the type of bugs that are most difficult to debug [36, 37]
and severely hurt the reliability of multi-threaded software sys-
tems [33, 43]. Ray et al. [45] compared multiple programming
languages and found that Go is especially prone to concur-
rency bugs. Moreover, Tu et al. [49] reported that message
passing is just as error-prone as shared memory, and that mis-
use of channels is even more likely to cause blocking bugs
(e.g., deadlock) than misuse of mutexes. Thus, it is urgent
to combat concurrency bugs in Go, especially those caused
by misuse of channels, since Go advocates the use of chan-
nel and many programmers choose Go because of this very
feature [30, 42].

2. Limitations of the State of the Art

Many advanced techniques have been built for concurrency
bug detection and automated concurrency bug fixing. Unfortu-
nately, none of them are effective at tackling channel-related
bugs for Go.

Existing detection techniques fail to identify channel-related
bugs in large Go software systems for three reasons. First,
concurrency bug detection techniques designed for classic
programming languages [19, 20, 24, 29, 38, 39, 44, 47, 48]
mainly rely on analyzing shared-memory accesses, shared-
memory primitives, or channels different from those used
in Go (i.e., they are based on a different design model [20,
48] or have different channel operations [19]). Thus, these
techniques cannot detect bugs caused by misuse of channels in
Go. Second, the three concurrency bug detectors released by

the Go team [6, 7, 13] cover only limited buggy code patterns
and cannot identify the majority of Go concurrency bugs in the
real world [49]. Third, although recent techniques can identify
blocking bugs in Go using model checking [21, 31, 32, 41,
46], those techniques analyze each input program and all its
synchronization primitives as a whole. Due to the exponential
complexity of model checking, those techniques can handle
only small programs with a few primitives, and cannot scale
to large systems software containing millions of lines of code
and hundreds of primitives (e.g., Docker, Kubernetes).
Effective techniques have been proposed to fix concurrency
bugs due to misuse of shared-memory concurrency [25, 26, 34,
35] and prevent lock-related deadlocks at runtime [27, 51, 52,
53]. Although effective, fixing channel-related bugs in Go re-
quires different strategies — disabling bad timing of accessing
a shared resource, changing lock acquisition orders, or adding
coarse-granularity locks usually does not help fix channel-
related bugs. Moreover, Go provides many concurrency fea-
tures (e.g., channel, select) that are frequently used by Go
programmers. Leveraging those features could potentially gen-
erate patches with good readability, since those patches would
be similar to what developers usually do during programming
and bug fixing. Unfortunately, existing concurrency bug fixing
techniques do not exploit these new concurrency features.

3. Key Insights

We believe both concurrency bug detection and concurrency
bug fixing for Go should center around Go’s channel-related
concurrency features.

With respect to detection, we anticipate that many devel-
opers choose Go because of its channel-related concurrency
features. Unfortunately, developers are generally trained
more to program shared-memory concurrency than to program
message-passing concurrency, and thus they are more likely to
make mistakes when using channels, causing channel-related
bugs. A promising way of detecting these bugs is to extend
existing constraint systems by modeling channel operations,
since constraint solving has successfully been used to combat
concurrency bugs due to misuse of shared memory.

One challenge of automated bug fixing is improving the
readability for generated patches, so that they will be more
readily accepted by developers. One potential solution for
Go concurrency bugs is to leverage channel-related features.
Since those features are powerful and already frequently used
by developers, using them aligns with programmers’ usual
practice and can reduce the lines of changed code for generated
patches. Thus, it will be easier for developers to validate and



accept generated patches.

4. Main Artifacts

In this paper, we build a static concurrency bug detection
system, GCatch, and an automated concurrency bug fixing
system, GFix (see Figure 2 in the main paper). GCatch fo-
cuses on detecting blocking misuse-of-channel (BMOC) bugs,
since the majority of channel-related bugs in Go are block-
ing bugs [49]. It also contains five additional detectors based
on effective approaches for discovering concurrency bugs in
classic programming languages.

The innovation of GCatch lies in applying constraint solv-
ing to identify BMOC bugs in large Go systems software. Its
design takes two steps. To scale to large Go software, GCatch
conducts reachability analysis to compute the relationship be-
tween synchronization primitives of an input program, and
leverages that relationship to disentangle the primitives into
small groups. GCatch inspects each group only in a small pro-
gram scope. To identify BMOC bugs, GCatch enumerates exe-
cution paths for all goroutines executed in a small scope, uses
a novel constraint system to precisely describe how channel
operations proceed and block, and invokes Z3 [18] to search
for a possible execution causing some operations to block for-
ever (i.e., a blocking bug). Existing constraint systems model
primitives (e.g., mutex) without states [22, 23, 28, 50]; how-
ever, since a channel’s behavior depends on its states (e.g.,
how many elements are in the channel), modeling channels is
much more complex.

Once GCatch has detected BMOC bugs, GFix leverages
channel-related concurrency features to generate patches for
those bugs, and the patches have good performance and read-
ability. GFix conducts static analysis to categorize input
BMOC bugs into three groups and provides different strate-
gies for each. GFix automatically increases channel buffer
sizes or uses keywords defer and select to change blocking
channel operations to be non-blocking and fix bugs in each
group. Since GFix’s patches change only the blocking channel
operations without influencing other parts of the programs, the
patches have little performance impact. Unlike existing bug
fixing techniques, GFix’s patches mimic the way developers
usually program Go in reality and change only a few lines of
code. Thus, the patches are easy for developers to validate.

We implemented GCatch and GFix using the SSA pack-
age [14] and the AST package [12]. GCatch detects BMOC
bugs in Go by modeling channel-related concurrency features,
while GFix fixes BMOC bugs using channel-related language
features. The two techniques constitute an end-to-end sys-
tem to combat BMOC bugs and improve the reliability of
production-run Go systems software.

5. Key Results and Contributions

We evaluate GCatch and GFix on 21 popular real-world Go
software systems including Docker, Kubernetes, and gRPC.

In total, GCatch finds 149 previously unknown BMOC bugs
and 119 previously unknown traditional bugs; the number of
false positives reported amounts to less than half the number
of real bugs. We reported all detected bugs to developers. So
far, 210 bugs (125 BMOC bugs and 85 traditional bugs) have
been fixed based on our reporting. The largest application
used in our evaluation (Kubernetes) contains more than three

million lines of code. GCatch can finish inspecting it in 25.6

hours and find 15 BMOC bugs, demonstrating its capability

to analyze large Go software. Overall, GCatch can effectively
detect BMOC bugs in large, real Go software.

GFix generates patches for 124 detected BMOC bugs. All
of them are correct, and almost all of them incur less than
1% runtime overhead. On average, each patch changes 2.67
lines of code, and in 99 of the patches, only one line of code is
changed. So far, 87 of the generated patches have been applied
directly by developers. In summary, GFix’s patches have
good performance and readability, and are easily validated and
accepted by developers.

In summary, we make the following contributions:

e Based on a novel constraint system for channel operations
and an effective disentangling policy, we build a concur-
rency bug detection system that can analyze large Go sys-
tems software.

e We design an automated bug fixing system for BMOC bugs
in Go. This system generates correct patches with good
performance and readability.

e We conduct thorough experiments to evaluate our systems.
We identify and patch hundreds of previously unknown
concurrency bugs in real Go software.

Go covers many concurrency features in many other new
programming languages (e.g., Rust, Kotlin), and thus our tech-
niques can potentially be applied to those languages. Our
experience in extending existing constraint systems by model-
ing a new concurrency primitive with states motivates future
researchers to enhance existing techniques by handling unique
features of new programming languages.

6. Why ASPLOS

This paper emphasizes the synergy of programming languages
and operating systems.

This paper describes a concurrency bug detection technique
and a concurrency bug fixing technique for the new program-
ming language Go. Both of the detection technique and the fix-
ing technique are based on static program analysis. Moreover,
the detection leverages a novel constraint system, belonging
to the formal methods area. Thus, this paper is relevant to the
area of programming languages.

Go is widely used to build concurrent systems. The ultimate
goal of this paper is to improve the reliability of Go systems
software. In particular, we evaluate our techniques on two fa-
mous container systems (Docker and Kubernetes). Therefore,
this paper is relevant to the area of operating systems.
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