Automatically Detecting and Fixing Concurrency Bugs in Go Software Systems
Extended Abstract

Ziheng Liu', Shuofei Zhu', Bogin Qin?, Hao Chen?, Linhai Song!

1Pennsylvania State University, 2BUPT, 3University of California, Davis

1. Motivation

Go is a statically typed programming language designed by
Google in 2009 [9]. In recent years, Go has gained increasing
popularity in building software in production environments.
These Go programs range from libraries [3] and command-
line tools [1, 4] to systems software, including container sys-
tems [8, 15], databases [2, 5], and blockchain systems [11].

The major design goal of Go is to provide an efficient and
safe way for developers to write concurrent programs [10]. To
achieve this purpose, it provides lightweight threads (called
goroutines) that can be easily created, and advocates the use
of channels to explicitly pass messages across goroutines,
on the assumption that message-passing concurrency is less
error-prone than shared-memory concurrency supported by
traditional programming languages [16, 17, 40]. In addition,
Go also provides several unique primitives and libraries for
concurrent programming.

Unfortunately, there are still many concurrency bugs in
Go, the type of bugs that are most difficult to debug [36, 37]
and severely hurt the reliability of multi-threaded software sys-
tems [33, 43]. Ray et al. [45] compared multiple programming
languages and found that Go is especially prone to concur-
rency bugs. Moreover, Tu et al. [49] reported that message
passing is just as error-prone as shared memory, and that mis-
use of channels is even more likely to cause blocking bugs
(e.g., deadlock) than misuse of mutexes. Thus, it is urgent
to combat concurrency bugs in Go, especially those caused
by misuse of channels, since Go advocates the use of chan-
nel and many programmers choose Go because of this very
feature [30, 42].

2. Limitations of the State of the Art

Many advanced techniques have been built for concurrency
bug detection and automated concurrency bug fixing. Unfortu-
nately, none of them are effective at tackling channel-related
bugs for Go.

Existing detection techniques fail to identify channel-related
bugs in large Go software systems for three reasons. First,
concurrency bug detection techniques designed for classic
programming languages [19, 20, 24, 29, 38, 39, 44, 47, 48]
mainly rely on analyzing shared-memory accesses, shared-
memory primitives, or channels different from those used
in Go (i.e., they are based on a different design model [20,
48] or have different channel operations [19]). Thus, these
techniques cannot detect bugs caused by misuse of channels in
Go. Second, the three concurrency bug detectors released by

the Go team [6, 7, 13] cover only limited buggy code patterns
and cannot identify the majority of Go concurrency bugs in the
real world [49]. Third, although recent techniques can identify
blocking bugs in Go using model checking [21, 31, 32, 41,
46], those techniques analyze each input program and all its
synchronization primitives as a whole. Due to the exponential
complexity of model checking, those techniques can handle
only small programs with a few primitives, and cannot scale
to large systems software containing millions of lines of code
and hundreds of primitives (e.g., Docker, Kubernetes).
Effective techniques have been proposed to fix concurrency
bugs due to misuse of shared-memory concurrency [25, 26, 34,
35] and prevent lock-related deadlocks at runtime [27, 51, 52,
53]. Although effective, fixing channel-related bugs in Go re-
quires different strategies — disabling bad timing of accessing
a shared resource, changing lock acquisition orders, or adding
coarse-granularity locks usually does not help fix channel-
related bugs. Moreover, Go provides many concurrency fea-
tures (e.g., channel, select) that are frequently used by Go
programmers. Leveraging those features could potentially gen-
erate patches with good readability, since those patches would
be similar to what developers usually do during programming
and bug fixing. Unfortunately, existing concurrency bug fixing
techniques do not exploit these new concurrency features.

3. Key Insights

We believe both concurrency bug detection and concurrency
bug fixing for Go should center around Go’s channel-related
concurrency features.

With respect to detection, we anticipate that many devel-
opers choose Go because of its channel-related concurrency
features. Unfortunately, developers are generally trained
more to program shared-memory concurrency than to program
message-passing concurrency, and thus they are more likely to
make mistakes when using channels, causing channel-related
bugs. A promising way of detecting these bugs is to extend
existing constraint systems by modeling channel operations,
since constraint solving has successfully been used to combat
concurrency bugs due to misuse of shared memory.

One challenge of automated bug fixing is improving the
readability for generated patches, so that they will be more
readily accepted by developers. One potential solution for
Go concurrency bugs is to leverage channel-related features.
Since those features are powerful and already frequently used
by developers, using them aligns with programmers’ usual
practice and can reduce the lines of changed code for generated
patches. Thus, it will be easier for developers to validate and



accept generated patches.

4. Main Artifacts

In this paper, we build a static concurrency bug detection
system, GCatch, and an automated concurrency bug fixing
system, GFix (see Figure 2 in the main paper). GCatch fo-
cuses on detecting blocking misuse-of-channel (BMOC) bugs,
since the majority of channel-related bugs in Go are block-
ing bugs [49]. It also contains five additional detectors based
on effective approaches for discovering concurrency bugs in
classic programming languages.

The innovation of GCatch lies in applying constraint solv-
ing to identify BMOC bugs in large Go systems software. Its
design takes two steps. To scale to large Go software, GCatch
conducts reachability analysis to compute the relationship be-
tween synchronization primitives of an input program, and
leverages that relationship to disentangle the primitives into
small groups. GCatch inspects each group only in a small pro-
gram scope. To identify BMOC bugs, GCatch enumerates exe-
cution paths for all goroutines executed in a small scope, uses
a novel constraint system to precisely describe how channel
operations proceed and block, and invokes Z3 [18] to search
for a possible execution causing some operations to block for-
ever (i.e., a blocking bug). Existing constraint systems model
primitives (e.g., mutex) without states [22, 23, 28, 50]; how-
ever, since a channel’s behavior depends on its states (e.g.,
how many elements are in the channel), modeling channels is
much more complex.

Once GCatch has detected BMOC bugs, GFix leverages
channel-related concurrency features to generate patches for
those bugs, and the patches have good performance and read-
ability. GFix conducts static analysis to categorize input
BMOC bugs into three groups and provides different strate-
gies for each. GFix automatically increases channel buffer
sizes or uses keywords defer and select to change blocking
channel operations to be non-blocking and fix bugs in each
group. Since GFix’s patches change only the blocking channel
operations without influencing other parts of the programs, the
patches have little performance impact. Unlike existing bug
fixing techniques, GFix’s patches mimic the way developers
usually program Go in reality and change only a few lines of
code. Thus, the patches are easy for developers to validate.

We implemented GCatch and GFix using the SSA pack-
age [14] and the AST package [12]. GCatch detects BMOC
bugs in Go by modeling channel-related concurrency features,
while GFix fixes BMOC bugs using channel-related language
features. The two techniques constitute an end-to-end sys-
tem to combat BMOC bugs and improve the reliability of
production-run Go systems software.

5. Key Results and Contributions

We evaluate GCatch and GFix on 21 popular real-world Go
software systems including Docker, Kubernetes, and gRPC.

In total, GCatch finds 149 previously unknown BMOC bugs
and 119 previously unknown traditional bugs; the number of
false positives reported amounts to less than half the number
of real bugs. We reported all detected bugs to developers. So
far, 210 bugs (125 BMOC bugs and 85 traditional bugs) have
been fixed based on our reporting. The largest application
used in our evaluation (Kubernetes) contains more than three

million lines of code. GCatch can finish inspecting it in 25.6

hours and find 15 BMOC bugs, demonstrating its capability

to analyze large Go software. Overall, GCatch can effectively
detect BMOC bugs in large, real Go software.

GFix generates patches for 124 detected BMOC bugs. All
of them are correct, and almost all of them incur less than
1% runtime overhead. On average, each patch changes 2.67
lines of code, and in 99 of the patches, only one line of code is
changed. So far, 87 of the generated patches have been applied
directly by developers. In summary, GFix’s patches have
good performance and readability, and are easily validated and
accepted by developers.

In summary, we make the following contributions:

e Based on a novel constraint system for channel operations
and an effective disentangling policy, we build a concur-
rency bug detection system that can analyze large Go sys-
tems software.

e We design an automated bug fixing system for BMOC bugs
in Go. This system generates correct patches with good
performance and readability.

e We conduct thorough experiments to evaluate our systems.
We identify and patch hundreds of previously unknown
concurrency bugs in real Go software.

Go covers many concurrency features in many other new
programming languages (e.g., Rust, Kotlin), and thus our tech-
niques can potentially be applied to those languages. Our
experience in extending existing constraint systems by model-
ing a new concurrency primitive with states motivates future
researchers to enhance existing techniques by handling unique
features of new programming languages.

6. Why ASPLOS

This paper emphasizes the synergy of programming languages
and operating systems.

This paper describes a concurrency bug detection technique
and a concurrency bug fixing technique for the new program-
ming language Go. Both of the detection technique and the fix-
ing technique are based on static program analysis. Moreover,
the detection leverages a novel constraint system, belonging
to the formal methods area. Thus, this paper is relevant to the
area of programming languages.

Go is widely used to build concurrent systems. The ultimate
goal of this paper is to improve the reliability of Go systems
software. In particular, we evaluate our techniques on two fa-
mous container systems (Docker and Kubernetes). Therefore,
this paper is relevant to the area of operating systems.



References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]
[13]

[14]

[15]

[16]

[17]

[18]

A command-line fuzzy finder. https://github.com/
junegunn/fzf.

A distributed, reliable key-value store for the most crit-
ical data of a distributed system. https://github.
com/coreos/etcd.

A high performance, open-source universal RPC frame-
work. https://github.com/grpc/grpc—go.

A simple zero-config tool to make locally trusted devel-
opment certificates with any names you’d like. https:
//github.com/FiloSottile/mkcert.

CockroachDB is a cloud-native SQL database for build-
ing global, scalable cloud services that survive disasters.
https://github.com/cockroachdb/cockroach.

Command vet. URL: https://golang.org/cmd/vet/.

Data Race Detector. https://golang.org/doc/

articles/race_detector.html.

Docker - Build, Ship, and Run Any App, Anywhere.
https://www.docker.com/.

Effective  Go.
effective_go.html.

https://golang.org/doc/

Go (programming language). https://en.
wikipedia.org/wiki/Go_ (programming_

language).

Official Go implementation of the Ethereum protocol.
https://github.com/ethereum/go-ethereum.

Package AST. https://golang.org/pkg/go/ast/.

Package Deadlock.

com/sasha-s/go-deadlock.

https://godoc.org/github.

Package SSA. https://godoc.org/golang.org/x/
tools/go/ssa.

Production-Grade Container Orchestration. https://
kubernetes.io/.

The Go Blog:
ing.
by-communicating.

Share Memory By Communicat-
https://blog.golang.org/share-memory-—

Russ Cox. Bell Labs and CSP Threads. http://swtch.

com/~rsc/thread/.

Leonardo de Moura and Nikolaj Bjgrner. Z3: An efficient
smt solver. In Tools and Algorithms for the Construction
and Analysis of Systems (TACAS ’08), Berlin, Heidelberg,
2008.

[19]

(20]

(21]

(22]

(23]

[24]

[25]

[26]

[27]

Manuel Fiahndrich, Sriram Rajamani, and Jakob Rehof.
Static deadlock prevention in dynamically configured
communication networks. 2008.

Vojtundefinedch Forejt, Saurabh Joshi, Daniel Kroening,
Ganesh Narayanaswamy, and Subodh Sharma. Precise
predictive analysis for discovering communication dead-
locks in mpi programs. ACM Transactions on Program-
ming Languages and Systems, 2017.

Julia Gabet and Nobuko Yoshida. Static race detection
and mutex safety and liveness for go programs. In Pro-
ceedings of the 34th European Conference on Object-
Oriented Programming (ECOOP ’20), Berlin, Germany,
2020.

Jeff Huang and Arun K. Rajagopalan. Precise and maxi-
mal race detection from incomplete traces. In Proceed-
ings of the 2016 ACM SIGPLAN International Confer-
ence on Object-Oriented Programming, Systems, Lan-
guages, and Applications (OOPSLA ’16), New York, NY,
USA, 2016.

Jeff Huang, Charles Zhang, and Julian Dolby. Clap:
Recording local executions to reproduce concurrency
failures. In Proceedings of the 34th ACM SIGPLAN
Conference on Programming Language Design and Im-
plementation (PLDI ’13), Seattle, Washington, USA,
2013.

Omar Inverso, Truc L. Nguyen, Bernd Fischer, Sal-
vatore La Torre, and Gennaro Parlato. Lazy-cseq: A
context-bounded model checking tool for multi-threaded
c-programs. In 30th IEEE/ACM International Confer-
ence on Automated Software Engineering (ASE ’15),
Lincoln, Nebraska, USA, November 2015.

Guoliang Jin, Linhai Song, Wei Zhang, Shan Lu, and
Ben Liblit. Automated atomicity-violation fixing. In
Proceedings of the 32nd ACM SIGPLAN Conference
on Programming Language Design and Implementation
(PLDI’ 11), San Jose, California, USA, June 2011.

Guoliang Jin, Wei Zhang, Dongdong Deng, Ben Liblit,
and Shan Lu. Automated concurrency-bug fixing. In
Proceedings of the 10th USENIX Conference on Oper-
ating Systems Design and Implementation (OSDI’12),
Hollywood, California, USA, October 2012.

Horatiu Jula, Daniel Tralamazza, Cristian Zamfir, and
George Candea. Deadlock immunity: Enabling sys-
tems to defend against deadlocks. In Proceedings of the
8th USENIX Conference on Operating Systems Design
and Implementation (OSDI ’08), San Diego, California,
2008.


https://github.com/junegunn/fzf
https://github.com/junegunn/fzf
https://github.com/coreos/etcd
https://github.com/coreos/etcd
https://github.com/grpc/grpc-go
https://github.com/FiloSottile/mkcert
https://github.com/FiloSottile/mkcert
https://github.com/cockroachdb/cockroach
https://golang.org/doc/articles/race_detector.html
https://golang.org/doc/articles/race_detector.html
https://www.docker.com/
https://golang.org/doc/effective_go.html
https://golang.org/doc/effective_go.html
https://en.wikipedia.org/wiki/Go_(programming_language)
https://en.wikipedia.org/wiki/Go_(programming_language)
https://en.wikipedia.org/wiki/Go_(programming_language)
https://github.com/ethereum/go-ethereum
https://golang.org/pkg/go/ast/
https://godoc.org/github.com/sasha-s/go-deadlock
https://godoc.org/github.com/sasha-s/go-deadlock
https://godoc.org/golang.org/x/tools/go/ssa
https://godoc.org/golang.org/x/tools/go/ssa
https://kubernetes.io/
https://kubernetes.io/
https://blog.golang.org/share-memory-by-communicating
https://blog.golang.org/share-memory-by-communicating
http://swtch.com/~rsc/thread/
http://swtch.com/~rsc/thread/

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

Sepideh Khoshnood, Markus Kusano, and Chao Wang.
Concbugassist: Constraint solving for diagnosis and re-
pair of concurrency bugs. In Proceedings of the 2015

International Symposium on Software Testing and Analy-
sis (ISSTA ’15), Baltimore, MD, USA, 2015.

Daniel Kroening, Daniel Poetzl, Peter Schrammel, and
Bjorn Wachter. Sound static deadlock analysis for
c/pthreads. In 31st IEEE/ACM International Confer-
ence on Automated Software Engineering (ASE ’16),
Singapore, Singapore, September 2016.

Sugandha Lahoti. Why Golang is the fastest growing lan-
guage on GitHub. https://hub.packtpub.com/why-
golan—-is—the-fastest-growing-language—-on-
github/8.

Julien Lange, Nicholas Ng, Bernardo Toninho, and
Nobuko Yoshida. Fencing off go: Liveness and safety
for channel-based programming. In Proceedings of the
44th ACM SIGPLAN Symposium on Principles of Pro-
gramming Languages (POPL ’17), New York, NY, USA,
2017.

Julien Lange, Nicholas Ng, Bernardo Toninho, and
Nobuko Yoshida. A static verification framework for
message passing in go using behavioural types. In Pro-
ceedings of the 40th International Conference on Soft-
ware Engineering (ICSE ’18), New York, NY, USA,
2018.

N. G. Leveson and C. S. Turner. An investigation of the
therac-25 accidents. Computer, 1993.

Guangpu Li, Haopeng Liu, Xianglan Chen, Haryadi S.
Gunawi, and Shan Lu. Dfix: Automatically fixing timing
bugs in distributed systems. In Proceedings of the 40th
ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI "2019), Phoenix, AZ,
USA, June 2019.

Haopeng Liu, Yuxi Chen, and Shan Lu. Understanding
and generating high quality patches for concurrency bugs.
In Proceedings of the 2016 24th ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineer-
ing (FSE ’16), Seattle, Washington, USA, November
2016.

Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou.
Learning from mistakes — a comprehensive study of real
world concurrency bug characteristics. In Proceedings
of the 13th International Conference on Architectural
Support for Programming Languages and Operating Sys-
tems (ASPLOS ’08), Seattle, Washington, USA, March
2008.

(37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

Nuno Machado, Brandon Lucia, and Luis Rodrigues.
Concurrency debugging with differential schedule pro-
jections. ACM SIGPLAN Notices, 2015.

Mayur Naik and Alex Aiken. Conditional must not
aliasing for static race detection. In Proceedings of the
34th Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL '07), New
York, NY, USA, 2007.

Mayur Naik, Alex Aiken, and John Whaley. Effective
static race detection for java. In Proceedings of the 27th
ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI ’06), New York, NY,
USA, 2006.

Kedar S. Namjoshi. Are concurrent programs that are
easier to write also easier to check? 2008.

Nicholas Ng and Nobuko Yoshida. Static deadlock detec-
tion for concurrent go by global session graph synthesis.
In Proceedings of the 25th International Conference on
Compiler Construction (CC ’16), New York, NY, USA,
2016.

Keval Patel. Why should you learn Go?
https://medium.com/@kevalpatel2106/why—
should-you-learn-go-£607681fad6b.

Kevin Poulsen. Software Bug Contributed to Blackout.
URL: https://www.securityfocus.com/news/8016.

Dawson R. Engler and Ken Ashcraft. Racerx: Effective,
static detection of race conditions and deadlocks. In
Proceedings of the 19th ACM symposium on Operating
systems principles (SOSP ’03), Bolton Landing, New
York, USA, October 2003.

Baishakhi Ray, Daryl Posnett, Vladimir Filkov, and
Premkumar Devanbu. A large scale study of program-
ming languages and code quality in github. In Pro-
ceedings of the 22nd ACM SIGSOFT International Sym-
posium on Foundations of Software Engineering (FSE
’2014), Hong Kong, China, November 2014.

Alceste Scalas, Nobuko Yoshida, and Elias Benussi. Ver-
ifying message-passing programs with dependent be-
havioural types. In Proceedings of the 40th ACM SIG-
PLAN Conference on Programming Language Design
and Implementation (PLDI ’19), New York, NY, USA,
2019.

Vivek K Shanbhag. Deadlock-detection in java-library
using static-analysis. In 15th Asia-Pacific Software En-
gineering Conference (APSEC ’08), Beijing, China, De-
cember 2008.


https://hub.packtpub.com/why-golan-is-the-fastest-growing-language-on-github/8
https://hub.packtpub.com/why-golan-is-the-fastest-growing-language-on-github/8
https://hub.packtpub.com/why-golan-is-the-fastest-growing-language-on-github/8
https://medium.com/@kevalpatel2106/why-should-you-learn-go-f607681fad65
https://medium.com/@kevalpatel2106/why-should-you-learn-go-f607681fad65

[48]

[49]

[50]

[51]

[52]

[53]

Subodh Sharma, Ganesh Gopalakrishnan, and Greg
Bronevetsky. A sound reduction of persistent-sets for
deadlock detection in mpi applications. In Proceedings
of the 15th Brazilian conference on Formal Methods:
foundations and applications (SBMF ’12), Natal, Brazil,
2012.

Tengfei Tu, Xiaoyu Liu, Linhai Song, and Yiying Zhang.
Understanding real-world concurrency bugs in go. In
Proceedings of the Twenty-Fourth International Con-
ference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS ’19), New York,
NY, USA, 2019.

Chao Wang, Rhishikesh Limaye, Malay Ganai, and Aarti
Gupta. Trace-based symbolic analysis for atomicity vio-
lations. In Tools and Algorithms for the Construction and
Analysis of Systems, pages 328-342, Berlin, Heidelberg,
2010.

Yin Wang, Terence Kelly, Manjunath Kudlur, Stéphane
Lafortune, and Scott Mahlke. Gadara: Dynamic dead-
lock avoidance for multithreaded programs. In Proceed-
ings of the 8th USENIX Conference on Operating Sys-
tems Design and Implementation (OSDI ’08), Berkeley,
CA, USA, 2008.

Yin Wang, Stéphane Lafortune, Terence Kelly, Manju-
nath Kudlur, and Scott Mahlke. The theory of deadlock
avoidance via discrete control. In Proceedings of the 36th
Annual ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages (POPL ’09), New York,
NY, USA, 2009.

Jinpeng Zhou, Sam Silvestro, Hongyu Liu, Yan Cai,
and Tongping Liu. Undead: Detecting and preventing
deadlocks in production software. In Proceedings of the
32nd IEEE/ACM International Conference on Automated
Software Engineering (ASE ’17), Urbana-Champaign, IL,
USA, 2017.



	Motivation
	Limitations of the State of the Art
	Key Insights
	Main Artifacts
	Key Results and Contributions
	Why ASPLOS

