
ASPLOS’21 Submission #1225– Confidential Draft – Do Not Distribute!!

FaasCache: Keeping Serverless Computing Alive With Greedy-Dual Caching
Extended Abstract

1. Motivation: Keep-alive in FaaS
Functions as a Service (FaaS) is an emerging and popular
cloud computing model, where applications use cloud re-
sources through user defined “functions” that execute appli-
cation code [2]. FaaS is being used by different applications
such as web services, API services, parallel and scientific
computing, and in machine learning pipelines. The execution
time of each function is typically short—in the range of a few
milliseconds to a few seconds.

While Functions as a Service (also called serverless com-
puting) promises to revolutionize how applications use cloud
resources, the tight latency requirement and the wide diversity
in function characteristics raises new challenges in resource
management for FaaS. Specifically, current FaaS systems suf-
fer from cold-start problems due to the overhead of initializing
code and data dependencies before a function can start exe-
cuting. Our empirical analysis of popular FaaS applications
shows that the initialization overhead can as much as 80% of
the total running time.

Keeping the functions alive and warm after they have fin-
ished execution can alleviate the cold-start overhead. However,
keeping the execution environment alive and running, instead
of immediately terminating it, has some drawbacks. Keeping a
container or a VM alive consumes computing resources on the
physical servers (such as memory). Keep-alive algorithms and
policies thus need to balance the latency requirements of ap-
plications and the resource utilization of FaaS backend servers.
In this paper, we focus on how diverse FaaS workloads can
be efficiently executed, by developing a new class of resource
management techniques that balance this fundamental latency
vs. utilization tradeoff.

2. Limitations of the State of the Art
Current clouds and popular FaaS platforms (such as Open-
Whisk) use simple keep-alive policies (such as keeping func-
tions warm for a fixed amount of time). However, ideally,
keep-alive policies must keep functions alive based on their
resource and usage characteristics, which is challenging due to
the diversity in FaaS workloads. Primitive/lack of keep-alive
policies has resulted in application developers resorting to
brute-force techniques such as polling their functions so that
they are kept warm. Recent keep-alive policies [4] also do
not take into cognizance all function attributes such as their
resource footprints and other initialization overheads.

3. Key Insight: Use Caching for Keep-alive
Our primary insight is that the resource management of func-
tions is equivalent to object caching. Keeping a function warm

is equivalent to caching an object, and a warm function execu-
tion is equivalent to a cache hit. Terminating a function’s exe-
cution environment means that the subsequent invocation will
incur a cold-start penalty, and is thus equivalent to evicting an
object from a cache. The objective is to keep functions warm
such that the effective function latency is reduced—which is
equivalent to caching’s goal of reducing object access time. By
mapping keep-alive to the exhaustively studied caching prob-
lem, we can leverage principles and techniques from caching,
and apply them to serverless computing.

The caching analogy allows us to use the vast set of caching
algorithms and analytical models, and provides a new way to
approach resource provisioning for FaaS platforms. We use
hit-ratio curves to determine the ideal size of servers required
for handling FaaS workloads, and develop a new vertical auto-
scaling approach that dynamically adapts server size based
on the workload characteristics. The dynamic scaling uses
proportional control and hit-ratio curves to minimize both the
required server resources, and the cold-start overheads.

4. Artifacts
We implement all our keep-alive and provisioning policies in
our FaasCache system, which is based on the popular Open-
Whisk platform. We evaluate all our techniques with the re-
cently released Azure function trace [4]. We also use a custom
discrete-event keep-alive simulator for large-scale workload
analysis involving millions of invocations of up to 1000 dis-
tinct functions.

5. Key Results and Contributions
The rise of serverless computing and the challenges posed
by its heterogeneity, workload diversity, and latency require-
ments, will require a new class of approaches to FaaS resource
management. We argue that the vast collection of algorithms,
analytical models, practical optimizations, and hard lessons
from one of the most well studied fields in computer science,
caching, can be customized to address many of these chal-
lenges. While bespoke solutions to serverless resource man-
agement will continue to be developed, our intent is to show
the natural equivalence of caching and FaaS, and to highlight
how naturally and easily caching techniques can be adapted.

5.1. Greedy-Dual Keep-Alive
Our keep-alive policy is based on Greedy-Dual-Size-
Frequency object caching [1], which was designed for caches
with objects of different sizes, such as web-proxies and caches.
Classical caching policies such as LRU or LFU do not con-
sider object sizes, and thus cannot be completely mapped to



20 40 60 80
Memory (GB)

0.0

0.5

1.0

1.5

2.0
%

 In
cr

ea
se

 in
 E

xe
cu

tio
n 

Ti
m

e
GD
TTL
LRU
HIST
SIZE
LND
FREQ

Figure 1: Our caching-based keep-alive policies (such as
Greedy-Dual) can reduce the cold-start overhead by more than
3× compared to current (TTL) and state of the art approaches
(HIST [4]). The results are shown for a representative sam-
ple of the Azure function trace comprising of over 100 million
function invocations.

the keep-alive problem where the resource footprint of func-
tions is an important characteristic. As we shall show, the
Greedy-Dual approach provides a general framework to de-
sign and implement keep-alive policies that are cognizant of
the frequency and recency of invocations of different functions,
their initialization overheads, and sizes (resource footprints).

For each container, we assign a keep-alive priority, which
is computed based on the frequency of function invocation, its
running time, and its size:

Priority = Clock+
Freq×Cost

Size
(1)

This allows us to capture the function invocation recency
(Clock), the inter-arrival-time (frequency), its memory foot-
print size, and its cold-start cost. Because this approach con-
siders these different function attributes, it can improve the
keep-alive “cache hit rate”. We also develop and evaluate spe-
cialized versions of Greedy-Dual such as LRU, LFU, etc. We
evaluate all keep-alive policies on the Azure function trace [4],
as illustrated in Figure 1, which shows a 3× reduction in
cold-start overheads with our Greedy-Dual (GD) policy.

5.2. Caching-based Resource Provisioning
The fundamental challenge underlying resource provisioning
for FaaS workloads is the performance vs. resource allocation
tradeoff. Running a workload on large servers/VMs provides
more resources for the keep-alive cache, which reduces the
cold-starts and improves the application performance. We
develop a static provisioning policy that determines the server
memory size for a given function workload, that uses hit-ratio
curves that are constructed using the notion of reuse-distances.

To handle highly dynamic function workloads, our sys-
tem also dynamically scales VMs up or down (vertical auto-
scaling). Our dynamic VM-sizing approach uses hit-ratio
curves and a proportional controller, to minimize both the cold-
start overhead and the VM size. Our provisioning policies are
also evaluated using the Azure function trace, as illustrated in
Figure 2, which shows the dynamic server memory adjustment
in response to the function workload using our hit-ratio curve
and proportional control based method.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Time (s) 1e6

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

Co
ld

 st
ar

ts
/s

ec
on

d

Observed cold start rate
Without dynamic scaling
Target

0

2000

4000

6000

8000

10000

M
em

or
y 

Si
ze

 (M
B)

Memory Size

Figure 2: With dynamic cache size adjustment, the cold starts
per second are kept within a band, which reduces the average
server size by 30%.

Empirical findings. We implement our caching-based tech-
niques in a popular FaaS platform, OpenWhisk, and empiri-
cally evaluate our techniques on real-world FaaS workloads.
1. We conduct extensive trace-driven analysis of the tradeoffs

of keep-alive techniques under different workload charac-
teristics based on the Azure FaaS traces [4] and popular
FaaS applications [3]. Our experimental results indicate
that caching-based keep-alive can reduce cold-start over-
heads by 3×, improve application-latency by 6×, and re-
duce system load to run 2× more functions.

2. Our resource provisioning policies use hit-ratio curves to
determine the ideal server configuration (such as mem-
ory size) required to handle different function workloads.
The proportional-control based dynamic vertical-scaling
approach can adjust server resources to reduce the cold-
start probability, and reduce the average server size by more
than 30%.

6. Why ASPLOS
This paper combines the most cross-cutting area in computer
systems, caching, with resource management for Functions as
a Service clouds. We use caching techniques typically used in
storage systems and CDNs. The application of caching to FaaS
keep-alive will interest a broad swathe of the caching experts
in all different systems areas. We also combine serverless
computing with virtual machine overcommittment.

7. Citation for Most Influential Paper Award
This paper presents a surprising equivalence between Func-
tions as a Service and caching, and lays the groundwork for
a new family of principled keep-alive techniques. The gen-
eral, caching-based keep-alive and resource provisioning tech-
niques developed in this paper strengthen the theoretical and
practical foundations of serverless computing performance.

References
[1] Ludmila Cherkasova. Improving WWW Proxies Performance with

Greedy-Dual-Size-Frequency Caching Policy. 1998.
[2] Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-Che Tsai,

Anurag Khandelwal, Qifan Pu, Vaishaal Shankar, Joao Carreira, Karl
Krauth, Neeraja Yadwadkar, Joseph E. Gonzalez, Raluca Ada Popa,
Ion Stoica, and David A. Patterson. Cloud Programming Simplified:
A Berkeley View on Serverless Computing. arXiv:1902.03383 [cs],
February 2019. arXiv: 1902.03383.

[3] Jeongchul Kim and Kyungyong Lee. FunctionBench: A Suite of Work-
loads for Serverless Cloud Function Service. In 2019 IEEE 12th Inter-

2



national Conference on Cloud Computing (CLOUD), pages 502–504,
July 2019. ISSN: 2159-6182.

[4] Mohammad Shahrad, Rodrigo Fonseca, Íñigo Goiri, Gohar Chaudhry,
Paul Batum, Jason Cooke, Eduardo Laureano, Colby Tresness, Mark
Russinovich, and Ricardo Bianchini. Serverless in the Wild: Character-
izing and Optimizing the Serverless Workload at a Large Cloud Provider.
arXiv:2003.03423 [cs], June 2020. arXiv: 2003.03423.

3


	Motivation: Keep-alive in FaaS
	Limitations of the State of the Art
	Key Insight: Use Caching for Keep-alive
	Artifacts
	Key Results and Contributions
	Greedy-Dual Keep-Alive
	Caching-based Resource Provisioning

	Why ASPLOS
	Citation for Most Influential Paper Award

