
CutQC: Using Small Quantum Computers for Large
Quantum Circuit Evaluations

Extended Abstract

Wei Tang1, Teague Tomesh1, Jeffrey Larson2, Martin Suchara2, and Margaret Martonosi1

1Department of Computer Science, Princeton University
2Argonne National Laboratory

1. Motivation

Quantum computing (QC) has emerged as a promising ap-
proach that offers the potential for reduced computational time
in several areas [1], including machine learning [2, 3] and
computational chemistry [4, 5]. However, these proposed use
cases of QC assume the existence of large-scale, fault-tolerant,
universal quantum computers.

Instead, today’s quantum computers are noisy intermediate-
scale quantum (NISQ) devices [6], and major challenges limit
their effectiveness. First, because of noise from multiple
sources [7, 8, 9, 10], the difficulty of building reliable quan-
tum devices increases dramatically with increasing number
of qubits. In fact, larger devices realize significantly worse
fidelity than do smaller ones. Second, on a more fundamental
level, quantum computers can only execute circuits smaller
than the device size. For example, two of the largest current
quantum devices have 53 qubits [11, 12] and can execute cir-
cuits of that size with only limited fidelity. As a result, both
the noise and the intermediate-scale characteristics of NISQ
devices present significant obstacles to their practical use.

On the other hand, the only currently viable alternative for
QC evaluation—classical simulations of quantum circuits—
produces noiseless output but is not tractable. For example,
state-of-the-art full-state classical simulations of quantum cir-
cuits of merely 45 qubits require tens of hours on thousands of
high-performance compute nodes and hundreds of terabytes
of memory [13].

To realize quantum advantage in the near future, we need to
better utilize near-term NISQ quantum computers. This work
develops and demonstrates a comprehensive methodology for
cutting large quantum circuits. The resulting subcircuits are
mapped onto small quantum computers to expand the reach
of small quantum computers with postprocessing techniques
that augment small QC platforms with classical computing
resources.

2. Limitations of the State of the Art

Several promising qubit technologies exist. For example, the
largest superconducting quantum computers by IBM [12] and
Google [11] have 53 qubits. However, experiments show
that these devices can reliably execute circuits with only a
few qubits [14, 15]. Other technologies currently have much
smaller sizes [16, 17].

Many quantum compilation techniques for NISQ devices
have been developed. The recently developed ones include use
of real-time device calibration data to improve circuit fidelity
by optimally mapping logical qubits to physical ones [18, 19],
efficiently scheduling operations to reduce quantum gate
counts [20], and repeating circuit executions to mitigate er-
ror [21, 22, 23]. These techniques focus on improving a purely
quantum computing approach, however, and are intrinsically
limited by the size and reliability of NISQ devices. Specif-
ically, these techniques do not allow executions of circuits
requiring more qubits than are on the device, and their reliabil-
ity improvement is limited.

Classical quantum circuit simulations beyond approxi-
mately 30 qubits typically use supercomputers, often requiring
hundreds to thousands of compute nodes [24, 25, 13], millions
of core-hours [26], and a prohibitive amount of memory [27].
In addition, many simulate only a small subset of output states
with low fidelity for large quantum circuits, a process called
partial state simulation [28, 25, 29]. In general, most of these
approaches do not scale. Specifically, even partial state classi-
cal simulation beyond 65 qubits is currently difficult [28].

Work done in theoretical physics has considered trading
classical and quantum computational resources. These ap-
proaches use simple partitioning of qubits [30] or involve
exponential postprocessing [31]. Several works manually sep-
arate small toy circuits with convenient structures as proof-of-
concept numerical demonstrations [32, 33]. However, these
theoretical propositions are inflexible, suffer from exponen-
tially high postprocessing costs, and target only a narrow set
of quantum circuits. In addition, these works merely prove the
mathematical validity but otherwise lack the necessary com-
ponents for practical implementations. Our work addresses
all of these shortcomings, applying efficient partitioning and
highly parallelizable postprocessing techniques to realize a
practical circuit cutting implementation. This allows for useful
trade-offs between classical and quantum compute resources.

3. Key Insights
The core insight from this work is that mixed-integer pro-
gramming (MIP) can efficiently find cut locations to par-
tition general quantum circuits and distribute the work-
load between quantum and classical platforms. The cut
locations have a direct and significant impact on the amount of
postprocessing required. Therefore, efficient methods for au-



tomatically cutting and distributing the quantum circuit execu-
tion workload in a manner that minimizes such postprocessing
costs is crucial to its practical application.

The second core insight from this work is that the introduc-
tion of the Dynamic Definition (DD) algorithm enables ef-
ficient location of solution quantum states and reconstruc-
tion of the probability output landscape for large circuits.

We use both insights to leverage quantum and classical
computing resources in a hybrid manner. Leveraging the two
platforms together allows us to execute circuits that are much
larger than the individual quantum and classical limits. These
circuits are also executed much faster than current simulation
alternatives and with more reliable outputs than provided by
NISQ devices. Our approach, called CutQC, effectively uses
small quantum computers as coprocessors in quantum circuit
evaluation. CutQC allows sharing the quantum circuit execu-
tion workload between the quantum and classical computing
platforms more flexibly, with exponentially lower overhead,
and can target general quantum circuits.

4. Main Artifact

Our main artifact is the first end-to-end hybrid approach that
(i) automatically locates efficient positions to cut a large quan-
tum circuit into smaller subcircuits that are (ii) each indepen-
dently executed using quantum devices with fewer qubits. Via
scalable postprocessing techniques, the output of the original
circuit can then be reconstructed or sampled efficiently from
the subcircuit outputs.

Our QC backend is built on top of IBM’s Qiskit [34] pack-
age and uses IBM’s quantum computers, but we emphasize
that this hybrid approach works with any gate-based quan-
tum computing platform. The backend for the automatic cut
searcher is implemented in the Gurobi solver [35]. The post-
processing techniques are built as a parallel C implementation
that utilizes the kernel functions in the Basic Linear Algebra
Subprograms package in the Intel Math Kernel Library [36]
to optimize the performance on CPUs.

We evaluated our artifact by experimental studies of its
runtime and using real-system runs on IBM’s quantum devices
to demonstrate its fidelity advantage.

5. Key Results and Contributions

To evaluate the performance of CutQC, we benchmarked six
different quantum circuits that represent a general set of cir-
cuits for gate-based QC platforms and promising near-term
applications. Figure 6 in the paper shows that CutQC offers
an average of 60X to 8600X runtime speedup over classical
simulation alternatives for different benchmarks. In addition,
Figure 9 demonstrates executing quantum circuits of up to
100 qubits on existing NISQ devices with our approach. This
is significantly beyond the current reach of either quantum
or classical methods alone. Moreover, Figure 10 shows that
IBM’s quantum computers using CutQC achieve significant

χ2 reduction over state-of-the-art large NISQ devices for vari-
ous benchmarks.

Specifically, our contributions are as follows:
1. Expanding the size of quantum circuits that can be run on
NISQ devices and classical simulation by combining the two.
Our method allows executions of quantum circuits more than
twice the size of the available quantum device backend and
significantly beyond the classical simulation limit.
2. Improving the fidelity of quantum circuit executions on
NISQ devices. We show an average of 21% to 47% improve-
ment to χ2 loss for different benchmarks by using CutQC
with small quantum devices over direct executions on large
quantum devices.
3. Achieving significant speedup of overall quantum circuit
execution over purely classical simulations by orders of mag-
nitude. We use quantum devices as coprocessors to achieve
an average of 60X to 8600X runtime speedup over classical
simulations for different benchmarks.

6. Why ASPLOS

As an emerging computational domain, QC requires hardware-
software codesign in order to move toward practical and scal-
able approaches. This paper identifies shortcomings in NISQ
hardware—namely, its constrained and error-prone resources—
and develops hardware-software solutions for moving past
those shortcomings.

By optimally cutting large quantum circuits, our toolchain
identifies opportunities for combining quantum and classical
approaches. CutQC executes subcircuits on quantum com-
puting platforms with postprocessing on classical computing
platforms. The combination of quantum and classical strate-
gies along with hardware and software strategies are within
the scope of the ASPLOS audience.

Likewise, our use of existing compiler approaches such as
those in Qiskit along with MIP optimization techniques is
within the scope of ASPLOS.

By publishing in ASPLOS, this work will invite future work
from the ASPLOS research community that harnesses broad
programming languages and architecture expertise to advance
this important research domain toward practical and scalable
solutions as QC matures.

7. Citation for Most Influential Paper Award

By demonstrating how to leverage both quantum and classical
computing platforms together to execute quantum algorithms
beyond the reach of either one alone, this work pioneered
pathways for scalable quantum computing. Even as NISQ ma-
chines scaled to larger sizes and as fault-tolerant QC emerged,
CutQC’s techniques for automatically cutting and efficiently
reconstructing quantum circuit executions—and subsequent
works building on it—offered the overall, practical strategy
for hybrid quantum/classical advantage in QC applications.
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