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1. Motivation

Quantum computing is a promising method to speed up a
number of important applications. These applications include
factoring large numbers [7], searching a database [2], and sim-
ulating quantum systems [6]. With around 100 reliable qubits,
quantum computers can already solve useful problems that are
out of reach for classical computers. The rapid progress of
physical implementation of quantum computers paved the way
for the design of tools to help users write quantum programs
for any given quantum device. However, physical constraints
inherent in current NISQ architectures prevent most quantum
algorithms from being directly executed on quantum devices.

In the superconducting quantum computers, qubits operate
in the nearest neighbor architecture, in which direct inter-
actions form a bounded degree coupling graph. To enable
two-qubit gates, logical qubits must be mapped to qubits that
are physically placed next to each other. Due to the bounded
degree connectivity of physical qubits on current devices, it
is generally considered impossible to find an initial mapping
that makes the entire circuit hardware-compliant. The com-
mon practice is to dynamically remap logical qubits to phys-
ical qubits via SWAP gates such that each two-qubit gate is
mapped to two physically connected qubits. This problem is
called qubit mapping problem.

Our paper focuses on the qubit mapping problem. The
qubit mapping problem takes a logical circuit and a hardware
coupling graph as input, outputs a transformed circuit. Only
swap operations are allowed to be added into the transformed
circuit. After transformation, all two-qubit gates must be
performed on qubits that have direct links. Our goal is to
let programmers develop quantum algorithms that take full
advantage of the potentially disruptive computing paradigm
without having to worry about low level machine details. Our
effort is an important step for building the required compilation
tool for near-term quantum computers.

2. Limitations of the State of the Art

Previous studies on the qubit mapping problem [3, 13, 14, 15,
10, 9] have focused on gate-optimal solution. They minimize
the number of inserted SWAP gates. Some [15, 3] also en-
hance the parallelism among the inserted SWAP gates while
minimizing the gate count. Zulehner et al. [15] propose a
systematic solution using A-star paradigm for optimizing the
number of swap gates for a given layer of concurrent CNOT
gates in the circuit. Li er al. [3] formulate a multi-objective

function for exploiting the trade-off between different swap
insertion strategies. The study by Siraichi et al. [9] models the
swap-insertion problem as a subgraph isomorphism problem.
Wille e al. [13] propose a model for gate-optimal mapping
using the SAT solver. A number of studies [12, 5] note the
variability of qubit error rate in IBM quantum computer and
develop variability-aware qubit mapping strategies. None of
the studies above focuses on time-optimal qubit mapping. That
is, minimizing the execution time of the hardware-compliant
circuit instead of the gate count. A SWAP operation, although
can be implemented in different ways, is decomposed into
quantum gate(s) as well. The process of adding SWAPs to a
logical circuit involves adding extra gates into the circuit. As
a result, it would alter the structure of the circuit. The inserted
swap gates need to fit into the original circuit in a synergistic
way to maximize execution parallelism.

Time-optimal qubit mapping maximizes parallelism. It
has an additional benefit of mitigating the decoherence effect.
Qubits are error prone. A qubit’s energy decays over time. It
gradually lose its state information. The phenomenon is called
decoherence. The longer it takes to run a circuit, the more
likely a qubit decoheres. A time-optimal solution minimizes
the impact of decoherence for the qubits in the circuit, and
results in higher successful trial rate for the circuit as a whole.
There are two previous works [11, 1] focusing on time-optimal
qubit mapping, but they impose implicit constraints. [11]
uses a constrained based ILP solver, which solves for the
time coordinate of each gate (including swap gate) and the
qubit mapping at every time coordinate. It adopts an indirect
approach for optimal depth circuit. It tests different upper
bounds of the circuit depth until the ILP has a solution. The
method may suffer from scalability issues when the optimal
circuit time is not close to the set upper bound. Our model
does not impose such a constraint. It explicitly solves for the
optimal solution. [1] uses greedy depth-aware methods but it
only optimizes the depth of the inserted swaps. Our mapper
optimizes the depth of the entire circuit.

3. Key Insights

It is not trivial to achieve time optimality when addressing
the qubit mapping problem. As there are so many possible
permutations of circuit gates and inserted swaps. However,
Time-optimal solutions, even for small size circuit, could be
very useful. If an optimal solution for a logical circuit has
recurring pattern, we can obtain the optimal solution for small-
size inputs, and use that to deduce the generalized solution.
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Figure 1: Adapting QFT logical circuit to LNN architecture: (a) 6-qubit LNN and initial mapping, (b) logical qft-6 circuit where each
line represents a logical qubit g;, and (c) physical gft-6 circuit where each line represents a physical qubit ;. The last swap gate
in red in (c) is added for showing the symmetric pattern. Our solver does not have the swap in its returned solution.

We use quantum fourier transformation (QFT) to demon-
strate the usefulness of our implemented time-optimal qubit
mapper. QFT is at the heart of integer factorization [8] and
serves as the basis for many important quantum algorithms.

It is challenging to map QFT to a bounded degree coupling
graph. The logical QFT circuit requires all-to-all connection.
The skeleton QFT circuit is shown in Fig. 1 (b). Even for the
simplest architecture, for instance, the linear nearest neighbor
architecture (LNN), it is not trivial to immediately tell what
would be the best qubit mapping solution. In the LNN, qubits
are placed in a conceptually straight line. An example of
6-qubit LNN is shown in Fig. 1 (a).

We use the time-optimal qubit mapper developed in this
paper to solve for 6-qubit QFT on LNN. Our qubit mapper
returns a physical circuit as shown in Fig. 1 (c). A very clear
pattern for the optimal solution manifests itself in this solution.
We find that this pattern can be generalized to arbitrary size
QFT. Our generalized solution happens to be the same as the
solution by Maslov et al. [4]. However, the result by Masolv
et al. is found manually. It is published in physics literature
as a standalone paper. Our automatic qubit mapper finds the
optimal solution for 6-qubit QFT on LNN in < 1 second.

Moreover, for QFT on more complicated architectures, we
are not aware of any concrete optimal solution discovered.
Maslov et al. predicted lower bound time complexity of trans-
formed QFT circuit. In this paper, using our automatic qubit
mapping framework, we find and generalize a solution for QFT
on arbitrary size 2 X N architectures. Our transformed circuit
complexity matches the lower bound complexity proved by
Maslov et al. . Hence it is verified to be optimal, not only for
small number of, but also for arbitrary number of qubits.

4. Main Artifacts

We develop a simple and natural model to represent the search
space of all hardware-compliant executions for the same logi-
cal circuit. We develop a qubit mapping algorithm based on
the A* paradigm. Our algorithm is both optimal and com-
plete. We further build a framework of techniques to reduce
the search complexity in the exponential search space. We
also build an approximated non-optimal qubit mapper.

The algorithm and the framework of techniques are imple-
mented using C++. They are evaluated on important bench-
marks including quantum fourier transformation and logical

reversible circuits for synthesis. They are compared against
the theoretical result of lower bound complexity of the eval-
uated benchmark in physics literature [4] and two best qubit
mapping algorithms we are aware of [3, 15].

5. Key Results and Contributions

Our work enhances the understanding of time-optimal qubit
mapping problem in the following ways:

e We present the first theoretical model for time-optimal qubit
mapping. It lends itself to optimality guarantee, flexible
extension, and practical algorithm design.

e We present a search framework based on our time-optimal
mapping model. It consists of space pruning components
including redundancy elimination and comparative filter. It
significantly reduces the time complexity of the search, and
makes our qubit mapping method feasible.

e We present exact analysis by implementing our theoretical
model for solving quantum applications with regular ex-
ecution patterns. We find a time-optimal solution for the
quantum fourier transformation (QFT) program on linear
nearest neighbor architecture. We note our time-optimal so-
lution is the same as an existing solution documented in the
physics literature by [4]. However, we find it automatically
within 1 seconds while [4] found it by hand.

e We further use the exact analysis program to solve for QFT
on two dimensional quantum architecture. We find an opti-
mal solution with complexity 3n+ &'(1) which no one has
found before as far as we know. [4] proved that a solution’s
lower bound is 3n+ €(1) but did not provide a solution.
Therefore we confirmed our solution is indeed optimal.

e We present a scalable extension of our theoretical model
that can be used to solve large circuits. The search space is
significantly pruned to rule out the branches that are unlikely
to yield a good solution. Our practical implementation is an
approximation of the optimal model, however, it still outper-
forms state-of-the-art qubit mappers by a speedup ranging
from 1.09x to 2.04X, by 1.62x on average, for representative
benchmarks from RevLib, Qiskit, and ScaffCC.
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