
Analytical Characterization and Design Space Exploration for Optimization of
CNNs

Extended Abstract

Rui Li1, Yufan Xu1, Aravind Sukumaran-Rajam2, Atanas Rountev3, and P. Sadayappan1

1University of Utah, 2Washington State University, 3Ohio State University

1. Motivation
Convolutional Neural Networks (CNNs) have had transforma-
tive impact. Since they are computationally very demanding,
there have been numerous efforts towards optimized imple-
mentation of CNNs [8, 11, 7, 2]. The cost of data movement
dominates the cost of floating-point arithmetic computations
on all current hardware platforms. Hence loop tiling is a
crucial transformation for optimizing CNNs. The CNN com-
putation can be expressed as a 7-dimensional loop nest. Multi-
level tiling is required for limiting data movement in a memory
hierarchy with multiple levels of caches. Tiling creates one ad-
ditional tile-loop per level of tiling, for each tiled iterator. The
total design space corresponds to all possible permutations of
tile-loops at each level, for all possible combinations of tile
sizes. This space is explosively large and therefore all prior
efforts at optimizing CNNs have only been able to explore a
limited subset of the full design space.

2. Limitations of the State of the Art
The current state of the art in optimizing CNNs include (1)
vendor libraries, such as Nvidia’s cuDNN [3] for GPUs and
Intel’s oneDNN [9] for multicore CPUs, and (2) optimizing
code generation frameworks such as TVM [2]. Libraries for
CNN implement a small number of code variants and use
models/heuristics to select tile sizes and code variants at run
time. TVM uses empirical auto-tuning to measure the perfor-
mance of candidate code versions and also employs a machine
learning model to guide the auto-tuning process. With current
CNN libraries, only a limited number of tiled code variants
are implemented, using insights from developers to determine
the tile loop structure. With auto-tuning-based code genera-
tors, many more code versions are evaluated during the tuning
process, but the space must still be structured by experts with
good insights because the full search space is much too large
to search effectively in a reasonable amount of time.

3. Key Insights

In this paper, we solve the design-space exploration problem
for optimizing multi-level tiled CNN code in a principled and
comprehensive way. To achieve this, we develop the first ap-
proach that analytically models the data movement for any
CNN stage in a multi-level memory hierarchy. Using this
model, we show how to explore the entire search space, look-
ing for the configuration that minimizes the bandwidth-scaled

Auto
tuning Micro Kernel Design Space

Exploration
oneDNN 5 Highly optimized Minimal
TVM 3 NA Limited
MOpt 5 Not highly optimized Comprehensive

Table 1: Strengths/limitations of oneDNN, TVM, and MOpt

data movement in the limiting level of the memory hierarchy.
The key insight of the presented approach, which differentiates
it from previous CNN optimization efforts, is that analytical
modeling and reasoning enables dramatic pruning of the ex-
tremely large space of loop permutations and tile sizes, reduc-
ing it to a small number of constrained non-linear optimization
problems that can be solved by off-the shelf solvers.

Figure 1 shows the components of the MOpt system
(Modeling-based Optimizer) for generating optimized CNN
code for multicore processors, based on a new comprehensive
design-space exploration approach for tile-loop optimization.
The leftmost component represents a conceptual methodology
for pruning the space of possible permutations of tile-loops
for single-level tiling, using analytical modeling of data move-
ment volume to identify a very small subset—containing only
8 elements—of the full space of tile-loop permutations, guar-
anteed to contain an optimal configuration that minimizes data
volume for tiled execution. The right portion of the figure
shows the tool components for code generation for a specific
CNN. For the set of pruned tile-loop permutations, constrained
non-linear optimization problems are automatically gener-
ated and solved using an off-the-shelf solver (AMPL [4] with
Ipopt [12]) to produce optimal tile sizes Ti, j and data move-
ment costs Ci (here j ranges over the levels of the memory
hierarchy). The best solution gives the tile sizes and tile-loop
permutation to be used to generate customized C code for the
CNN stage, with tile loops surrounding a CNN microkernel
that implements register-tiling using vector intrinsics.

Table 1 contrasts the strengths and limitations of CNN li-
braries like Intel’s oneDNN, state-of-the-art auto-tuning code-
generator TVM, and MOpt. oneDNN is a vendor library
that includes highly optimized microkernels developed and
optimized by Intel engineers over many years. However, it dy-
namically chooses among a small number of pre-determined
tiled code structures based on the CNN array sizes provided at
invocation, i.e., it performs minimal design-space exploration.
TVM performs a search through a limited design space, as
specified by the tuning script.

Conv. spec.

Permutation
pruning

P1

P8

Cost expr.
generator

Solver

Cost modeling

({T1,1,T1,2,…},C1)

({T8,1,T8,2,…},C8)

Min
({Tm,1,Tm,2,…},C m) Code

generator

Micro kernel

Tiled C code with
embedded
micro kernel

Permutation pruning
for single-level tiling

Multi-level tile optimization Code generation

… …

Figure 1: Mopt Overview

Mob
ilen

et1

Mob
ilen

et2

Mob
ilen

et3

Mob
ilen

et4

Mob
ilen

et5

Mob
ilen

et6

Mob
ilen

et7

Mob
ilen

et8

Mob
ilen

et9Yo
lo0

Yo
lo2

Yo
lo4

Yo
lo5

Yo
lo8

Yo
lo9

Yo
lo1

2
Yo

lo1
3

Yo
lo1

8
Yo

lo1
9

Yo
lo2

3

Resn
et1

Resn
et2

Resn
et3

Resn
et4

Resn
et5

Resn
et6

Resn
et7

Resn
et8

Resn
et9

Resn
et1

0

Resn
et1

1

Resn
et1

2
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Sp
ee

du
p

(re
la

tiv
e

to
 T

VM
)

 595
 504

 723

 510

 587 308
 333 120 130 141

 710 722

 255

 759

 329 669 396

 206

 322
 526

 639
 169 491

 118

 565 295 117
 330

 102 78
 122

machine peak = 921.9 GflopsMOpt-1 MOpt-5 oneDNN TVM
 314 (4.02x ,4.74x ,4.82x, 1,0x)

Figure 2: Performance (relative to TVM) and variance for Mobilenet, Yolo-9000, and Resnet-18 on i7-9700K

MOpt’s strength is comprehensive design-space exploration
to seek tile-loop structures and tile sizes that minimize the
data volume at the bottleneck resource in the multi-level cache
hierarchy. It does not use any empirical auto-tuning in its
search and uses a micro-kernel that is not as highly optimized
as oneDNN’s. Nevertheless, the achieved performance of
MOpt’s code on the CNN stages of three DNN pipelines is
almost always better and often much better than TVM’s code,
and comparable and sometimes much better than oneDNN.

4. Experimental Results

We compare the performance of code generated by MOpt
with two state-of-the-art frameworks: (i) Intel oneDNN
(v1.5) library, and (ii) TVM (v0.6). All MOpt codes and
oneDNN were compiled using the Intel ICC 2019 com-
piler with flags "-O3 -march=native -qopenmp". TVM
recommends using the LLVM framework; hence we used
LLVM-8. TVM tuning was based on the built-in template:
"generic.schedule_conv2d_nchw" [1]. We used XGBTuner as
the ML tuning model, and we set "LLVM -mcpu=core-avx2 to
vectorize the code. For each CNN benchmark, we ran TVM’s
auto-tuner with its internal ML model to find the best configu-
ration in 1000 trials. The experiments were carried out on an
8-core Intel Core i7-9700K CoffeeLake processor, with 32KB
L1 cache per core, 256KB L2 cache per core, and a shared
12MB L3 cache.

We evaluated the performance of MOpt generated code on
all CNN benchmarks used by TVM in their extensive compar-
ative evaluation [2] against various other CNN optimization
frameworks. The benchmarks used by TVM include all 12
conv2d operators from Resnet-18 [5] and the 9 depthwise
conv2d operators from MobileNet [6]. In addition we used
all 11 conv2d operators from Yolo-9000 [10]. The bar charts
and the left vertical axes in Figure 2 show performance nor-
malized to performance of TVM-optimized code. We show
performance of two MOpt code versions (i) MOpt-1: The
code version generated with the configuration with minimum

modeled cost, and (ii) MOpt-5: The best among the top five
code versions based on model prediction. The inclusion of
MOpt-5 highlights the potential for performance improvement
by use of limited empirical auto-tuning with MOpt. Since the
modeling in MOpt is based on an idealized fully associative
cache, occasionally we find (e.g., Yolo9 and Yolo18) that con-
flict misses cause a significant drop in performance; but when
the top five configurations are considered, the best among
the top-5 always performed very well. Geometric means of
speed-up over oneDNN are 1.16× on Yolo, 1.37× on ResNet,
and 1.24× on MobileNet. Geometric means of speed-up over
TVM are 1.73× on Yolo, 1.40× on ResNet, and 1.52× on
MobileNet.

5. Key Contributions

The main contributions of this work are as follows.
1) It presents the first comprehensive analytical modeling for
data movement volume for multi-level tiled CNN execution
on a system with a multi-level memory hierarchy, covering the
full space of permutations and tile sizes.
2) It is the first analysis that exploits algebraic properties
of the non-linear analytical expressions for data-movement
volume to dramatically prune the number of distinct cases from
thousands to only eight in order to find the global optimum
in the entire space of tile-loop permutations for a single-level
tiled CNN. The factor of reduction in the search space that is
enabled by this algebraic analysis is exponentially higher for
multi-level tile-size optimization.
3) The utility of the proposed new analytical modeling and
optimization is demonstrated via a custom code generator
for high-performance multicode CPU code for CNNs. The
evaluation considers all CNN stages from MobileNet, ResNet-
18, and Yolo9000. The achieved performance is comparable
to or better than both the state-of-the-art oneDNN library from
Intel, and the state-of-the-art TVM framework for auto-tuned
code generation.

2

References
[1] TVM CNN tuning script. https://github.com/apache/

incubator-tvm/blob/v0.6/topi/python/topi/x86/conv2d.
py.

[2] T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, M. Cowan, H. Shen,
L. Wang, Y. Hu, L. Ceze, C. Guestrin, and A. Krishnamurthy. TVM: An
automated end-to-end optimizing compiler for deep learning. In Proc.
USENIX Symposium on Operating Systems Design and Implementation
(OSDI), 2018.

[3] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catan-
zaro, and E. Shelhamer. cuDNN: Efficient primitives for deep learning.
arXiv preprint arXiv:1410.0759, 2014.

[4] R. Fourer, D. M. Gay, and B. W. Kernighan. AMPL. A Modeling
Language for Mathematical Programming. 2003.

[5] K. He, X. Zhang, S. Ren, and J. Sun. Identity mappings in deep
residual networks. In European Conference on Computer Vision, pages
630–645. Springer, 2016.

[6] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam. Mobilenets: Efficient convo-
lutional neural networks for mobile vision applications. arXiv preprint
arXiv:1704.04861, 2017.

[7] C. Li, Y. Yang, M. Feng, S. Chakradhar, and H. Zhou. Optimizing
memory efficiency for deep convolutional neural networks on GPUs.
In SC’16: Proc. International Conference for High Performance Com-
puting, Networking, Storage and Analysis, pages 633–644, 2016.

[8] Y. Liu, Y. Wang, R. Yu, M. Li, V. Sharma, and Y. Wang. Optimizing
CNN model inference on CPUs. In 2019 USENIX Annual Technical
Conference (USENIX ATC 19), pages 1025–1040, 2019.

[9] oneDNN: oneAPI Deep Neural Network Library. https://01.org/
onednn.

[10] J. Redmon and A. Farhadi. Yolo9000: better, faster, stronger. In
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 7263–7271, 2017.

[11] Y. M. Tsai, P. Luszczek, J. Kurzak, and J. Dongarra. Performance-
portable autotuning of OpenCL kernels for convolutional layers of
deep neural networks. In 2016 2nd Workshop on Machine Learning in
HPC Environments (MLHPC), pages 9–18. IEEE, 2016.

[12] A. Wächter and L. T. Biegler. On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear program-
ming. Mathematical programming, 106(1):25–57, 2006.

3

https://github.com/apache/incubator-tvm/blob/v0.6/topi/python/topi/x86/conv2d.py
https://github.com/apache/incubator-tvm/blob/v0.6/topi/python/topi/x86/conv2d.py
https://github.com/apache/incubator-tvm/blob/v0.6/topi/python/topi/x86/conv2d.py
https://01.org/onednn
https://01.org/onednn

	Motivation
	Limitations of the State of the Art
	Key Insights
	Experimental Results
	Key Contributions

