Mind Mappings: Enabling Efficient Algorithm-Accelerator Mapping Space
Search
Extended Abstract

Kartik Hegde, Po-An Tsai*, Sitao Huang,
Vikas Chandra™, Angshuman Parashar*, Christopher W. Fletcher
University of Illinois at Urbana-Champaign, *NVIDIA, *Facebook

1. Motivation

The slowing of Moore’s Law coupled with a fast-growing
demand for efficient compute has ushered in the era of special-
ized hardware. Although specialized, hardware accelerators
still provide some degree of configurability and programma-
bility [9, 14, 7, 10, 5] to cope with the diversity, i.e., different
parameterizations of an algorithm or even a range of algo-
rithms, in the targeted domain.

Such flexibility creates a new problem: given a workload,
we must find an efficient mapping, i.e., parameterized instance,
of that workload onto the specialized architecture. We refer to
this problem as map space search. A mapping can involve var-
ious decisions, such as how to allocate valuable on-chip buffer
capacity to each data structure, how to schedule computation
temporally and spatially across the system, and so on.

Map space search is a critical problem facing the commu-
nity today for several reasons. First, prior work has shown
that execution efficiency is very sensitive to the choice of
mapping [4, 12, 7, 11, 9, 10, 14]. Second, the same studies
illustrate how the optimal mapping varies significantly depend-
ing on problem size and parameters (e.g., CNN layer shapes),
resource availability, performance and power requirements,
etc. This suggests that map space search will constitute an
increasing recurring cost, as accelerators are continuously
re-targeted for new problems and parameterizations.

Making matters worse, accelerators lack the consistent
hardware-software abstraction that ISAs provide in the general-
purpose computing world. This has resulted in map space
search tools being tied to specific accelerators; or worse, map
space search requiring manual expert-driven analysis (usually
by the accelerator designer).

2. Limitations of the State of the Art

Prior work has proposed tools and algorithms (i.e., Mappers)
to automate map space search but all existing approaches
have serious limitations due to the complexity of the search
space [7, 11, 3, 1, 15]. First, the search space is often high
dimensional, causing a combinatorial explosion in map space
size and rendering exhaustive techniques ineffective [11]. Sec-
ond, the search space is both non-convex (featuring many
local minima) and non-smooth (not differentiable). This has
forced prior work [3, 1, 15] to perform the search using black-
box optimization techniques [6], limiting search quality and
increasing search cost.

To illustrate these issues, consider black-box search ap-

proaches such as Simulated Annealing (SA)[8], Genetic Algo-
rithms (GA)[13], etc. These algorithms are called “black box”
as the search algorithm can only interact with the cost func-
tion through its evaluation interface: given an input mapping,
compute the cost, where “cost” is some efficiency metric such
as performance, energy, EDP, etc., and the “cost function” is
evaluated using an architectural simulator or the actual hard-
ware itself. During the search, black-box algorithms use the
cost function to evaluate the neighbors of the current mapping
to take the next best step that maximally improves the cost.

The above process is conceptually implemented as a two-
level loop where each outer loop iteration is a step, i.e., change
in mapping that improves cost, and the inner loop is a local
search that evaluates the cost of different neighboring map-
pings to determine the next best step to take. Since black-
box optimizers do not have access to information such as
gradients and Hessians of the cost function, the inner loop
is often stochastic [8] or based on heuristics learnt during
the search [2]. Therefore, the number of evaluations in the
inner loop exponentially increases with the map space dimen-
sionality, as higher dimensionality implies more neighbors to
consider per step.

3. Key Insight

To address the challenges above, this paper proposes Mind
Mappings, a scalable and automated method to quickly and
effectively perform map space search. The key idea is to ap-
proximate the cost function with a smooth, differentiable func-
tion called a surrogate, and to use the surrogate to perform
a more powerful gradient-based search. The differentiable
surrogate enables us to replace the expensive inner loop (Sec-
tion 2) to choose the next best step with constant work (i.e.,
independent of map space dimensionality): at each step in
the search space, we compute the gradient of the surrogate
at the current mapping and choose the next mapping based
on gradient descent. As gradients by definition point at the
steepest descent, the new mapping maximally reduces the cost
of the current mapping in the neighborhood, leading to a lo-
cal minima. With sufficient random restarts, Mind Mappings
leads to high quality solutions.

4. Main Artifacts

Mind mappings proposes a two phase optimization method as
shown in Figure 1.

Phase 1: Smooth function approximation. First, we ap-
proximate the otherwise non-smooth complex search space

© Trainable © Non-Trainable My =my — aVl
C L e,
.. Gradients via Surrogate Ctarget
; Mo t i l
Accelerator : (0] O_L

Cost Model A4 —0 om |
L .. s
. O — | S
* |'s

Uniform s O ‘

I
Random Sampling idtarget
Training Surrogate Model Random Surrogate Model
Set ¢ = f*(m, id) Phase 1 Initial Mapping ¢ = f*(m, id) Phase 2

Figure 1: Proposed search procedure. Phase 1: Training the surrogate model ¢* = f*(m,id) based on (mapping, map space id, cost) tuples
(m, id, c¢). DNN weights w are trained with back-prop. Phase 2: Given a map space id idmrget (problem instance) and a target cost c;qrg.r (a
lower-bound), use the trained surrogate model to iteratively guide a random initial mapping 7 towards an optimal mapping 7,p;. In each
iteration, 1, is updated using back-propogation with a gradient V of the estimated loss with a learning rate «. The trained model weights w are

held constant in this phase.

with a smooth, differentiable surrogate. The surrogate predicts
the cost of execution, given a mapping. This surrogate not
only enables us to generate gradients, but also saves us from
querying the potentially expensive cost function (e.g., run the
workload fully) at every step. Importantly, the surrogate need
only be constructed once (offline) for a given pair of algorithm
and accelerator, amortizing the cost of its construction.

Phase 2: Searching over the smooth function. Second,
we make a key observation that the smooth surrogate can
be used to directly generate a guided move in the mapping
space, relative to a reference mapping, that will maximally
reduce cost. As in Figure 1, we start by choosing a random
initial mapping. This mapping is then updated at each step via
gradients generated by computing the difference between the
predicted cost and a target cost, where the target cost may be
some theoretical lower-bound cost, e.g., “0.”

Not only is this process efficient (as gradients point in the
steepest descent direction), it also does not require expert
knowledge in the target domain. That is, both predicting the
cost given a mapping and finding an optimal mapping given
a lower-bound cost are formulated as learning problems. i.e.,
without requiring manual domain-expert analysis.

We refer the reader to Section 4 of the main paper for
detailed description of the Mind Mappings approach.

5. Key Results and Contributions

Evaluation. We prototyped Mind Mappings (MM) for ten-
sor accelerators (CNNs and MTTKRP). The proposed search
method achieves 1.75x, 2.11x, 1.09x (iso-iteration) and
2.2x,2.3x, 1.6x(iso-time) better energy-delay-product over
techniques from state-of-the-art mappers, simulated annealing,
genetic algorithms, and reinforcement learning, respectively,
on average.

5.1. Key Take Aways

1. High Quality Solutions: Mind Mappings finds mappings
whose cost is less than or equal to those found by other

popular methods.

. Faster Time to Solution: Mind Mappings uses a much
faster surrogate model instead of the expensive cost func-
tion, hence enabling higher quality solution in lesser time
compared to other approaches.

. Optimality: The mappings found by by Mind Mappings
are within 5.3 x of the theoretical lower bound (possibly un-
achievable), pointing to proximity to the achievable global
optimum.

. Generality: Mind Mappings generalizes to different al-
gorithms, architectures, and problem shapes (e.g., differ-
ent CNN Layer shapes), without requiring any expert-
intervention, as demonstrated by the evaluations on CNN-
Layer and MTTKRP algorithms.

6. Why ASPLOS

Mind Mappings proposes an efficient approach to map space
search for programmable accelerators. Hence, Mind Map-
pings is of potential interest to both accelerator architects and
compiler designers; making ASPLOS a suitable venue.

7. Citation for Most Influential Paper Award

Mind Mappings dramatically improved the performance of
crucial algorithm-accelerator map-space search problem by
re-formulating the problem to enable powerful gradient-based
search techniques, thus influencing future works. Proposed
solution enabled a target domain-independent approach that
generalized to different algorithms and architectures without
needing any expert intervention, leading to its wide adoption.

References

[1] Byung Hoon Ahn, Prannoy Pilligundla, and Hadi Esmaeilzadeh. Rein-
forcement learning and adaptive sampling for optimized dnn compila-
tion. arXiv preprint arXiv:1905.12799, 2019.

[2] Eric Brochu, Vlad M Cora, and Nando De Freitas. A tutorial on
bayesian optimization of expensive cost functions, with application to
active user modeling and hierarchical reinforcement learning. arXiv
preprint arXiv:1012.2599, 2010.

[3]

[4]

[5]

[6]

[7]

[8]

[9]

(10]

(1]

[12]

[13]

[14]

[15]

Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie
Yan, Haichen Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis
Ceze, etal. {TVM}: An automated end-to-end optimizing compiler for
deep learning. In /3th {USENIX} Symposium on Operating Systems
Design and Implementation ({OSDI} 18), pages 578-594, 2018.
Yu-Hsin Chen, Joel Emer, and Vivienne Sze. Eyeriss: A spatial archi-
tecture for energy-efficient dataflow for convolutional neural networks.
ISCA’16.

Yu-Hsin Chen, Tien-Ju Yang, Joel Emer, and Vivienne Sze. Eyeriss v2:
A flexible accelerator for emerging deep neural networks on mobile
devices. IEEE Journal on Emerging and Selected Topics in Circuits
and Systems, 9(2):292-308, 2019.

Daniel Golovin, Benjamin Solnik, Subhodeep Moitra, Greg Kochanski,
John Karro, and D Sculley. Google vizier: A service for black-box
optimization. In Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 1487—
1495. ACM, 2017.

Kartik Hegde, Rohit Agrawal, Yulun Yao, and Christopher W Fletcher.
Morph: Flexible acceleration for 3d cnn-based video understanding.
In 2018 51st Annual IEEE/ACM International Symposium on Microar-
chitecture (MICRO), pages 933-946. IEEE, 2018.

Scott Kirkpatrick, C Daniel Gelatt, and Mario P Vecchi. Optimization
by simulated annealing. science, 220(4598):671-680, 1983.
Hyoukjun Kwon, Ananda Samajdar, and Tushar Krishna. Maeri: En-
abling flexible dataflow mapping over dnn accelerators via reconfig-
urable interconnects. SIGPLAN Not., 53(2):461-475, March 2018.
Wenyan Lu, Guihai Yan, Jiajun Li, Shijun Gong, Yinhe Han, and

Xiaowei Li. Flexflow: A flexible dataflow accelerator architecture for
convolutional neural networks. In HPCA’17.

Angshuman Parashar, Priyanka Raina, Yakun Sophia Shao, Yu-Hsin
Chen, Victor A Ying, Anurag Mukkara, Rangharajan Venkatesan,
Brucek Khailany, Stephen W Keckler, and Joel Emer. Timeloop:
A systematic approach to dnn accelerator evaluation. In 2019 IEEE
International Symposium on Performance Analysis of Systems and
Software (ISPASS), pages 304-315. IEEE, 2019.

Angshuman Parashar, Minsoo Rhu, Anurag Mukkara, Antonio
Puglielli, Rangharajan Venkatesan, Brucek Khailany, Joel Emer,
Stephen W. Keckler, and William J. Dally. Scnn: An accelerator
for compressed-sparse convolutional neural networks. ISCA’17.
Rainer Storn and Kenneth Price. Differential evolution—a simple and
efficient heuristic for global optimization over continuous spaces. Jour-
nal of global optimization, 11(4):341-359, 1997.

Fengbin Tu, Shouyi Yin, Peng Ouyang, Shibin Tang, Leibo Liu, and
Shaojun Wei. Deep convolutional neural network architecture with
reconfigurable computation patterns. VLSI’I7.

Size Zheng, Yun Liang, Shuo Wang, Renze Chen, and Kaiwen Sheng.
Flextensor: An automatic schedule exploration and optimization frame-
work for tensor computation on heterogeneous system. In Proceedings
of the Twenty-Fifth International Conference on Architectural Support
for Programming Languages and Operating Systems, pages 859-873,
2020.

	Motivation
	Limitations of the State of the Art
	Key Insight
	Main Artifacts
	Key Results and Contributions
	Key Take Aways

	Why ASPLOS
	Citation for Most Influential Paper Award

