
ASPLOS’21 Submission #148– Confidential Draft – Do Not Distribute!!

Speculative Interference Attacks: Breaking Invisible Speculation Schemes
Extended Abstract

1. Motivation

Speculative execution attacks such as Spectre [29] and follow-
on work [8, 11, 21, 28, 30, 34, 41, 51] have opened a new
chapter in processor security. In these attacks, adversary-
controlled transient instructions—i.e., speculative instructions
bound to squash—access and then transmit potentially sen-
sitive program data over microarchitectural covert channels
(e.g., the cache [53], port contention [8]). For example in
Spectre variant 1—if (i < N) { j = A[i]; B[j];
}—speculative execution bypasses a bounds check due to a
branch misprediction, accesses an out-of-bounds value (j =
A[i]) and transmits that value through a cache-based covert
channel (B[j]), i.e., by forcing a cache fill to occur in a set
that depends on j. In this paper, we consider the illegally
accessed value j to be the secret. Here, the attacker controls
the value of i, thus j can be any value in program memory
and the covert channel can reveal arbitrary program data.

While a variety of covert channels can be used to leak
secret values under mis-speculation, cache-based covert chan-
nels [29, 35, 52, 53, 54] make the fewest assumptions on the
attacker and have therefore received the most attention. This
is for two reasons. First, secret-dependent cache fills leave
a persistent footprint in the cache which is observable long
after speculation squashes. Second, certain levels of modern
cache hierarchies are globally shared by all cores in the sys-
tem, enabling attackers to observe said persistent state changes
from other physical cores [33, 52]. By contrast, many other
covert channels (e.g., arithmetic port contention [6, 8]) leave
only intermittent side effects that must be monitored before
the squash, and/or require that the attacker share hardware
resources on the same physical core (e.g., branch predictor
channels [4, 14])—both of which can be easily blocked (e.g.,
disabling SMT).

State-of-the-art transient memory side channel de-
fenses. The above view of the covert channel landscape
has led to a surge of architecture-level “invisible specula-
tion” proposals to block cache-based covert channels due to
mis-speculations (e.g., InvisiSpec [51], SafeSpec [26], Delay-
on-Miss [37], Conditional Speculation [31], MuonTrap [5]).
Invisible speculation schemes add hardware to prevent mis-
speculated loads from making persistent state changes to the
memory subsystem. To maintain the performance benefits of
caching, only non-speculative loads that are bound to retire
are allowed to modify the cache state. To maintain the perfor-
mance benefits of out-of-order execution, loads are allowed to
“invisibly” execute (i.e., bring data directly to the core with-

out filling the cache) and forward their results to dependent
instructions.

2. Key Insights
In this paper we introduce speculative interference attacks,
which show that invisible speculation schemes do not fully
block speculation-based attacks that use the cache state. Our
attacks are based on two key observations. First, that mis-
speculated instructions can influence the timing of older,
bound-to-retire operations. Second, if changing the timing
of a memory operation changes the order of that memory
operation with respect to other memory operations, the re-
sulting re-ordering can cause persistent cache-state changes.
Putting these together, we show (among other attack vari-
ants) how secret information accessed in a mis-speculated
window influences the order of bound-to-retire loads, leaving
secret-dependent state changes in the cache—even if invisible
speculation is enabled.

To explain these ideas in more detail, consider a simple
but representative invisible speculation scheme Delay-on-miss
(DoM) [37]. DoM issues a speculative load and (a) on an
L1 cache hit, forwards the load result to dependent instruc-
tions, or (b) on an L1 cache miss, delays servicing the miss
and re-issues the load when it becomes non-speculative. In
case (a), DoM does not update any replacement state (e.g.,
replacement bits) in the L1 cache until the load becomes non-
speculative. For simplicity, we explain ideas assuming only
branch instructions cast speculative shadows [37], i.e., a load
is considered non-speculative/safe iff it is older than the oldest
unresolved branch. We discuss attacks on more conservative
DoM variants in the main paper.

DoM’s (and other invisible speculation schemes’) stated se-
curity goal is to only focus on blocking cache state changes due
to mis-speculations, while leaving other covert channels un-
blocked. This is reflected in DoM’s design. On the one hand,
DoM prevents mis-speculated loads from directly changing the
cache state. On the other hand, DoM allows mis-speculated
loads to forward their results to dependent instructions, which
can clearly form covert channels through intermittent state
changes. For example, both whether a mis-speculated load hits
or misses in the L1 cache, and the mis-speculated load’s return
value, determine whether and how dependent mis-speculated
instructions execute. This is exactly the basis for forming, e.g.,
arithmetic unit port contention covert channels [6, 8].

This paper demonstrates how instructions that cause inter-
mittent state changes can be leveraged to create persistent
state changes in the cache. Consider the example in Figure 1,

non-spec instrs;
if (i < N) { // mispredict
 secret = A[i]; // M1
 k = B[secret*64]; // M2
 spec dependent instrs(k); }

Frontend

Exe1 Exe2
1

2

3

4

4
CDB

(a)

non-spec instrs:
 … = *X;
 … = *Y;
(c) == 0

secret LdX
== 1

LdY

LdY LdX

time

Y is MRU iff
secret == 1(d)

(b)

Figure 1: Speculative interference example. (a) Assume the code
snippet is run on a processor protected by invisible speculation such
as DoM and that &B[0] is cached while &B[64] is not cached. (b)
This results in speculative dependent instructions conditionally con-
tending for execution resources with non-speculative instructions,
depending on the value of secret. (c), (d) If the non-speculative
instructions are two loads, the contention can influence the order in
which the loads are issued. Finally, the attacker can infer the secret
based on the cache replacement state after the loads both issue.

modeled after Spectre variant 1. Suppose this code is run on a
processor using DoM. In Figure 1 (a), a mis-speculated load
M1 forwards secret data secret to a second load M2 (À). A
normal Spectre attack would monitor the cache state change
left by M2 to deduce secret. To prevent this leak, DoM
would prevent M2 from changing the cache state, specifically
by allowing it to access and return data from the L1 if there
is an L1 hit and delaying its execution otherwise. While this
blocks the cache state change due to M2, M2 is allowed to for-
ward its result when it completes (Á), meaning that dependent
instructions execute at a time that depends on secret (Â).
This has the potential to create a traditional non-cache based
covert channel, e.g., through execution unit port usage, which
DoM ignores.

Our key observation is that secret-dependent timing effects
caused by the dependent instructions can be monitored indi-
rectly through how they interact with the execution of older
non-speculative instructions. In this example, the instruc-
tion(s) before the mis-speculated branch (Ã). Although the
non-speculative instructions come before the speculative de-
pendent instructions in program order, out-of-order execution
could have both of them executing concurrently and contend-
ing for resources as shown in Figure 1 (b). For example, if
they use EXE1 and EXE2, respectively, and contend for the
common data bus in the same cycle. We call this speculative
interference.

Next, we show how speculative interference can be used to
bootstrap a change in the cache state. Specifically, suppose the
non-speculative instructions are made up of two independent
loads to addresses X and Y in different cache lines mapped
to the same set, shown in Figure 1 (c). Since these loads are
older than the mispredicted branch in program order, they are
not protected by DoM. We show how, depending on the timing
changes caused by the speculative dependent instructions, the
order in which load X is issued with respect to load Y can
change. That is, depending on a secret, the processor issues

either loads to X followed by Y or Y followed by X. To finish
the attack (Figure 1 (d)), we show how changing the order of
memory operations can be used to create persistent changes in
the cache state, the intuition being that state in the cache (e.g.,
replacement bits) depend on not just what requests are made,
but also their order.

This issue is not easy to fix. The crux of the problem is that
timing changes can be converted to persistent state changes.
These timing changes can arise due to interference through
a large number of microarchitectural structures, through dif-
ferent instructions, etc. Further, while our example reorders
two loads that originate from the same thread, there are many
other memory address streams through which to interleave
operations, e.g., interleaving instruction and data cache ac-
cesses, accesses made across threads and security domains,
etc.—which further widens the attack surface.

3. Main Artifacts
To evaluate our attacks, we implement three proof-of-
concept (PoC) attack variants—creating speculative inter-
ference through non-pipelined functional units, MSHR us-
age, and instruction fetch unit backpressure—and verify each
variant on an Intel Core i7-7700 Kaby Lake CPU with 4
physical cores. (While commercial processors do not cur-
rently implement invisible speculation, we write each PoC
to emulate the behavior of such schemes.) Of indepen-
dent interest, we develop a novel cache attack on the Intel
QLRU_H11_M1_R0_U0 replacement policy that detects load-
load reorderings. Finally, all of our PoC variants work when
the receiver (attacker) runs on a different physical core.

4. Key Results and Contributions
This paper introduces and provides a framework to reason
about speculative interference attacks, whereby subtle secret-
dependent microarchitectural interference influences the be-
havior of older non-speculative instructions. We show how
this can be used to create cache-based covert channels, even in
the presence of invisible speculation schemes. As stated above,
we implement three working proof-of-concept exploits creat-
ing different types of speculative interference that all lead to
cache-based side channels. Finally, we conclude with a discus-
sion on security definitions for soundly defeating the attacks,
and preliminary defensive ideas based on those definitions.

5. Why ASPLOS
This paper sits at the intersection between Architecture and
Security.

6. Citation for Most Influential Paper Award
This paper introduced speculative interference attacks, showed
how those attacks can undermine security for multiple pro-
posed invisible speculation schemes and set a research agenda
for next-generation invisible speculation schemes.

2

References
[1] 8th and 9th generation intel® core™ processor families datasheet,

volume 1 of 2. https://www.intel.com/content/
dam/www/public/us/en/documents/datasheets/
8th-gen-core-family-datasheet-vol-1.pdf.

[2] Kaby lake - microarchitectures - intel - wikichip. https://
en.wikichip.org/wiki/intel/microarchitectures/
kaby_lake.

[3] Andreas Abel and Jan Reineke. nanobench: A low-overhead tool
for running microbenchmarks on x86 systems. arXiv preprint
arXiv:1911.03282, 2019.

[4] Onur Acıiçmez, Çetin Kaya Koç, and Jean-Pierre Seifert. Predicting
secret keys via branch prediction. In Cryptographers’ Track at the RSA
Conference. Springer, 2007.

[5] Sam Ainsworth and Timothy M. Jones. Muontrap: Preventing cross-
domain spectre-like attacks by capturing speculative state. In Proc. of
the ACM/IEEE International Symposium on Computer Architecture
(ISCA), 2020.

[6] Alejandro Cabrera Aldaya, Billy Bob Brumley, Sohaib ul Hassan,
Cesar Pereida García, and Nicola Tuveri. Port contention for fun and
profit. In Proc. of the IEEE Symposium on Security and Privacy (S&P).
IEEE, 2019.

[7] Kristin Barber, Anys Bacha, Li Zhou, Yinqian Zhang, and Radu Teodor-
escu. SpecShield: Shielding Speculative Data from Microarchitectural
Covert Channels. In Proc. of the International Conference on Parallel
Architectures and Compilation Techniques (PACT), 2019.

[8] Atri Bhattacharyya, Alexandra Sandulescu, Matthias Neugschwandt-
ner, Alessandro Sorniotti, Babak Falsafi, Mathias Payer, and Anil
Kurmus. SMoTherSpectre: Exploiting Speculative Execution through
Port Contention. In Proc. of the ACM Conference on Computer and
Communications Security (CCS), 2019.

[9] Samira Briongos, Pedro Malagón, José M Moya, and Thomas Eisen-
barth. Reload+refresh: Abusing cache replacement policies to perform
stealthy cache attacks. In Proc. of the USENIX Security Symposium
(USENIX), 2020.

[10] Claudio Canella, Daniel Genkin, Lukas Giner, Daniel Gruss, Moritz
Lipp, Marina Minkin, Daniel Moghimi, Frank Piessens, Michael
Schwarz, Berk Sunar, Jo Van Bulck, and Yuval Yarom. Fallout: Leak-
ing data on meltdown-resistant cpus. In Proc. of the ACM Conference
on Computer and Communications Security (CCS), 2019.

[11] G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and T. H. Lai. SgxPectre:
Stealing intel secrets from sgx enclaves via speculative execution.
In Proc. of the IEEE European Symposium on Security and Privacy
(EuroS&P), 2019.

[12] Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu-Ghazaleh. Jump
over ASLR: Attacking branch predictors to bypass ASLR. In Proc.
of the IEEE/ACM International Symposium on Microarchitecture (MI-
CRO), 2016.

[13] Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu-Ghazaleh. Un-
derstanding and mitigating covert channels through branch predictors.
ACM Transactions on Architecture and Code Optimization (TACO),
13(1), 2016.

[14] Dmitry Evtyushkin, Ryan Riley, Nael Abu-Ghazaleh, and Dmitry
Ponomarev. Branchscope: A new side-channel attack on directional
branch predictor. In Proc. of the ACM International Conference on
Architectural Support for Programming Languages and Operating
Systems (ASPLOS), 2018.

[15] Agner Fog et al. Instruction tables: Lists of instruction latencies,
throughputs and micro-operation breakdowns for intel, amd and via
cpus. Copenhagen University College of Engineering, 93:110, 2011.

[16] Jacob Fustos, Michael Bechtel, and Heechul Yun. SpectreRewind:
Leaking secrets to past instructions. arXiv preprint arXiv:2003.12208,
2020.

[17] J. A. Goguen and J. Meseguer. Security policies and security models.
In Proc. of the IEEE Symposium on Security and Privacy (S&P), 1982.

[18] Ben Gras, Cristiano Giuffrida, Michael Kurth, Herbert Bos, and Kaveh
Razavi. ABSynthe: Automatic blackbox side-channel synthesis on
commodity microarchitectures. In Proc. of the Symposium on Network
and Distributed System Security (NDSS), 2020.

[19] Johann Großschädl, Elisabeth Oswald, Dan Page, and Michael Tunstall.
Side-channel analysis of cryptographic software via early-terminating
multiplications. In Proc. of the International Conference on Informa-
tion Security and Cryptology (ICISC), 2009.

[20] John L. Hennessy and David A. Patterson. Computer Architecture,
Sixth Edition: A Quantitative Approach. Morgan Kaufmann Publishers
Inc., 6th edition, 2017.

[21] Jann Horn. Speculative execution, variant 4: speculative store by-
pass. https://bugs.chromium.org/p/project-zero/
issues/detail?id=1528, 2018.

[22] Intel. Refined Speculative Execution Termi-
nology. https://software.intel.com/
security-software-guidance/insights/
refined-speculative-execution-terminology,
2020.

[23] Aamer Jaleel, Kevin B Theobald, Simon C Steely Jr, and Joel Emer.
High performance cache replacement using re-reference interval predic-
tion (rrip). ACM SIGARCH Computer Architecture News, 38(3):60–71,
2010.

[24] Mike Johnson. Superscalar Microprocessor Design. Prentice Hall
Englewood Cliffs, New Jersey, 1991.

[25] Mehmet Kayaalp, Nael Abu-Ghazaleh, Dmitry Ponomarev, and Aamer
Jaleel. A high-resolution side-channel attack on the last level cache. In
Proc. of the Design Automation Conference (DAC), 2016.

[26] Khaled N. Khasawneh, Esmaeil Mohammadian Koruyeh, Chengyu
Song, Dmitry Evtyushkin, Dmitry Ponomarev, and Nael B. Abu-
Ghazaleh. Safespec: Banishing the spectre of a meltdown with leakage-
free speculation. In Proc. of the Design Automation Conference (DAC),
2019.

[27] Vladimir Kiriansky, Ilia A. Lebedev, Saman P. Amarasinghe, Srinivas
Devadas, and Joel Emer. Dawg: A defense against cache timing
attacks in speculative execution processors. In Proc. of the IEEE/ACM
International Symposium on Microarchitecture (MICRO), 2018.

[28] Vladimir Kiriansky and Carl Waldspurger. Speculative buffer over-
flows: Attacks and defenses. arXiv preprint arXiv:1807.03757, 2018.

[29] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike
Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael
Schwarz, and Yuval Yarom. Spectre attacks: Exploiting speculative
execution. In Proc. of the IEEE Symposium on Security and Privacy
(S&P), 2019.

[30] Esmaeil Mohammadian Koruyeh, Khaled N. Khasawneh, Chengyu
Song, and Nael Abu-Ghazaleh. Spectre returns! speculation attacks
using the return stack buffer. In Proc. of the USENIX Workshop on
Offensive Technologies (WOOT), 2018.

[31] Peinan Li, Lutan Zhao, Rui Hou, Lixin Zhang, and Dan Meng. Con-
ditional speculation: An effective approach to safeguard out-of-order
execution against spectre attacks. In Proc. of the IEEE International
Symposium on High Performance Computer Architecture (HPCA),
2019.

[32] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher,
Werner Haas, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval
Yarom, and Mike Hamburg. Meltdown: Reading kernel memory from
user space. In Proc. of the USENIX Security Symposium (USENIX),
2018.

[33] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee. Last-level cache
side-channel attacks are practical. In Proc. of the IEEE Symposium on
Security and Privacy (S&P), 2015.

[34] Giorgi Maisuradze and Christian Rossow. Ret2spec: Speculative
execution using return stack buffers. In Proc. of the ACM Conference
on Computer and Communications Security (CCS), 2018.

[35] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks and
countermeasures: The case of aes. In Proc. of the Cryptographers’
Track at the RSA Conference (CT-RSA), 2006.

[36] Gururaj Saileshwar and Moinuddin K. Qureshi. Cleanupspec: An
"undo" approach to safe speculation. In Proc. of the IEEE/ACM Inter-
national Symposium on Microarchitecture (MICRO), 2019.

[37] Christos Sakalis, Stefanos Kaxiras, Alberto Ros, Alexandra Jim-
borean, and Magnus Själander. Efficient Invisible Speculative Ex-
ecution Through Selective Delay and Value Prediction. In Proc. of
the ACM/IEEE International Symposium on Computer Architecture
(ISCA), 2019.

[38] Jay Schulist, Daniel Borkmann, and Alexei Starovoitov.
Linux Socket Filtering aka Berkeley Packet Filter (BPF).
https://www.kernel.org/doc/Documentation/
networking/filter.txt, 2018.

[39] Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck, Julian
Stecklina, Thomas Prescher, and Daniel Gruss. ZombieLoad: Cross-
privilege-boundary data sampling. In Proc. of the ACM Conference on
Computer and Communications Security (CCS), 2019.

[40] Michael Schwarz, Clémentine Maurice, Daniel Gruss, and Stefan
Mangard. Fantastic timers and where to find them: high-resolution mi-
croarchitectural attacks in javascript. In Proc. of the International Con-
ference on Financial Cryptography and Data Security (FC). Springer,
2017.

3

https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/8th-gen-core-family-datasheet-vol-1.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/8th-gen-core-family-datasheet-vol-1.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/8th-gen-core-family-datasheet-vol-1.pdf
https://en.wikichip.org/wiki/intel/microarchitectures/kaby_lake
https://en.wikichip.org/wiki/intel/microarchitectures/kaby_lake
https://en.wikichip.org/wiki/intel/microarchitectures/kaby_lake
https://bugs.chromium.org/p/project-zero/issues/ detail?id=1528
https://bugs.chromium.org/p/project-zero/issues/ detail?id=1528
https://software.intel.com/security-software-guidance/insights/refined-speculative-execution-terminology
https://software.intel.com/security-software-guidance/insights/refined-speculative-execution-terminology
https://software.intel.com/security-software-guidance/insights/refined-speculative-execution-terminology
https://www.kernel.org/doc/Documentation/networking/filter.txt
https://www.kernel.org/doc/Documentation/networking/filter.txt

[41] Michael Schwarz, Martin Schwarzl, Moritz Lipp, and Daniel Gruss.
Netspectre: Read arbitrary memory over network. In Proc. of the
European Symposium on Research in Computer Security (ESORICS),
2019.

[42] Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine Maurice,
and Stefan Mangard. Malware guard extension: Using sgx to conceal
cache attacks. In Proc. of the Conference on Detection of Intrusions
and Malware, and Vulnerability Assessment (DIMVA), 2017.

[43] Robert M Tomasulo. An efficient algorithm for exploiting multiple
arithmetic units. IBM Journal of Research and Development, 11(1):25–
33, 1967.

[44] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris
Kasikci, Frank Piessens, Mark Silberstein, Thomas F. Wenisch, Yuval
Yarom, and Raoul Strackx. Foreshadow: Extracting the keys to the
Intel SGX kingdom with transient out-of-order execution. In Proc. of
the USENIX Security Symposium (USENIX), 2018.

[45] Stephan van Schaik, Alyssa Milburn, Sebastian Österlund, Pietro Frigo,
Giorgi Maisuradze, Kaveh Razavi, Herbert Bos, and Cristiano Giuf-
frida. RIDL: Rogue in-flight data load. In Proc. of the IEEE Symposium
on Security and Privacy (S&P), 2019.

[46] Pepe Vila, Pierre Ganty, Marco Guarnieri, and Boris Köpf. Cache-
Query: Learning Replacement Policies from Hardware Caches. In
Proc. of the ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), 2020.

[47] Jack Wampler, Ian Martiny, and Eric Wustrow. Exspectre: Hiding
malware in speculative execution. In Proc. of the Symposium on
Network and Distributed System Security (NDSS), 2019.

[48] Ofir Weisse, Ian Neal, Kevin Loughlin, Thomas Wenisch, and Baris
Kasikci. NDA: Preventing Speculative Execution Attacks at Their
Source. In Proc. of the IEEE/ACM International Symposium on Mi-
croarchitecture (MICRO), 2019.

[49] Ofir Weisse, Jo Van Bulck, Marina Minkin, Daniel Genkin, Baris
Kasikci, Frank Piessens, Mark Silberstein, Raoul Strackx, Thomas F.

Wenisch, and Yuval Yarom. Foreshadow-NG: Breaking the virtual
memory abstraction with transient out-of-order execution. Technical
report, 2018.

[50] Wenjie Xiong and Jakub Szefer. Leaking Information Through Cache
LRU States. In Proc. of the IEEE International Symposium on High
Performance Computer Architecture (HPCA), 2020.

[51] Mengjia Yan, Jiho Choi, Dimitrios Skarlatos, Adam Morrison, Christo-
pher W. Fletcher, and Josep Torrellas. InvisiSpec: Making Speculative
Execution Invisible in the Cache Hierarchy. In Proc. of the IEEE/ACM
International Symposium on Microarchitecture (MICRO), 2018.

[52] Mengjia Yan, Read Sprabery, Bhargava Gopireddy, Christopher
Fletcher, Roy Campbell, and Josep Torrellas. Attack Directories, Not
Caches: Side Channel Attacks in a Non-Inclusive World. In Proc. of
the IEEE Symposium on Security and Privacy (S&P), 2019.

[53] Yuval Yarom and Katrina Falkner. Flush+Reload: A high resolution,
low noise, L3 cache side-channel attack. In Proc. of the USENIX
Security Symposium (USENIX), 2014.

[54] Yuval Yarom, Daniel Genkin, and Nadia Heninger. Cachebleed: a
timing attack on openssl constant-time rsa. Journal of Cryptographic
Engineering, 7(2):99–112, 2017.

[55] Jiyong Yu, Namrata Mantri, Josep Torrellas, Adam Morrison, and
Christopher W. Fletcher. Speculative Data-Oblivious Execution (SDO):
Mobilizing Safe Prediction For Safe and Efficient Speculative Execu-
tion. In Proc. of the ACM/IEEE International Symposium on Computer
Architecture (ISCA), 2020.

[56] Jiyong Yu, Mengjia Yan, Artem Khyzha, Adam Morrison, Josep Tor-
rellas, and Christopher W. Fletcher. Speculative Taint Tracking (STT):
A Comprehensive Protection for Speculatively Accessed Data. In
Proc. of the IEEE/ACM International Symposium on Microarchitecture
(MICRO), 2019.

4

	Motivation
	Key Insights
	Main Artifacts
	Key Results and Contributions
	Why ASPLOS
	Citation for Most Influential Paper Award

