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1. Motivation
Our work is motivated by the design of programmable
data planes [7] in recent switch models, which in turn has
sparked significant interest in customizing program analysis
and profiling techniques for data plane programs written in
P4 [39, 32, 15, 33, 12, 11, 37].

Programmable data planes. Traditional network devices
are hardwired for a fixed set of protocols. Recently, emerging
network hardware is reprogrammable in high-level languages
like P4 [7] to customize protocols and processing behaviors
for each network and device. For instance, programmable
data planes can support customized header fields and protocol
types, enabling new protocols to be deployed without hard-
ware upgrades. They can perform sophisticated operations
over header fields, enabling task offloading to the switches.
They can also implement stateful data structures in hardware,
making it possible for the network to adapt its behavior based
on past events. Commercial off-the-shelf switch models in-
clude Intel FlexPipe [4], Barefoot Tofino [1], Broadcom Tri-
dent 4 [2], and Cisco Silicon One [3].

Innovations with programmable data planes have quickly
evolved from implementing forwarding programs (e.g., IP
forwarding, MPLS, or customized network protocols) to sup-
porting far more sophisticated processing inside the network—
in this paper, we call these second-generation P4 programs
data plane systems. Example systems in this category include
key/value caching [24], load balancing [26, 21], link failure de-
tection [19], access control [25], covert channel detection [43],
likely with many more to come. Data plane systems have
more complex program behaviors than forwarding programs,
because they perform stateful processing. Consider the Blink
link failure detector [19]: it randomly samples a set of TCP
flows, tracks per-flow retransmissions, keeps a sliding window
for monitoring, and activates rerouting to backup paths in a
round-robin manner. Historical traffic patterns will directly
influence future processing decisions. In contrast, forwarding
programs contain no or little state, so their program behaviors
do not change based on past traffic patterns.

Program profiling and analysis. Observing that pro-
grammable data planes are essentially “complex programs”,
researchers have been actively adapting program analysis, pro-
filing, and verification techniques [39, 33, 12, 32, 37, 11] for
P4 programs. Our work is particularly related to symbolic exe-
cution tools for P4 programs [39, 33, 12] . Symbolic execution
(symbex) [29] is a principled program profiling technique that
aims to systematically explore all program execution paths,
analyze which types of inputs would exercise what execution

paths, and produce concrete test inputs for validation.
However, existing symbex tools for P4 programs [39, 33,

12] are restricted to stateless forwarding program analysis,
and they cannot support the second generation of data plane
systems. As motivated earlier, as the trend of in-network
offloading continues, many recent P4 programs have increas-
ingly complex state; exercising these stateful execution paths
requires identifying a precise sequence of packets. But today’s
P4 profilers [39, 33, 12] can only generate single-packet test
cases regardless of program state. This falls short in analyzing
stateful program behaviors that are driven by historical traffic
inputs. Our work fills this gap and develops support to analyze
stateful data plane systems.

Concurrently, our work is driven by another fundamental ob-
servation made by the program analysis community—network
behaviors are inherently probabilistic. Depending on the prop-
erties of interest, stochastic traffic patterns, random failures,
load balancing decisions, and many other factors would con-
tribute to this inherent non-determinism. In other words, ana-
lyzing network programs as if all properties are deterministic—
as early work in this space did [14, 17, 13]—simply does not
match the reality of complex networks. A promising line of
work has developed support for probabilistic network analy-
sis [41, 16, 36, 35, 38], but so far they only focus on analyzing
network configurations [41, 38], or designing new probabilis-
tic network programming languages [16, 36, 35]. Our work
shares the same motivation with these work, but it is the first
to enable probabilistic profiling of data plane systems.

Our application: Adversarial testing. We discuss several
applications in the main paper, but focus on demonstrating one
use case in depth: adversarial testing. In contrast to basic pro-
gram testing, adversarial testing distinguishes and specifically
focuses on edge cases, as they may likely lead to unexpected
behaviors. This is motivated by a long body of work that auto-
mates the finding of adversarial inputs for different types of
systems and scenarios [34, 8, 42, 28, 31, 5, 23, 30, 20, 22, 18].
The most related work includes a) using machine learning tech-
niques to find adversarial inputs for network protocols [18],
and using execution cost aware symbolic execution to find
high-cost test packet traces [34]. Compared to these work,
P4wn contributes a new approach to adversarial testing that
identifies edge cases by their probabilities.

2. The Position of Our Work

The most related to our work is the symbex tools for P4
programs: a) some rely on KLEE [15], a general-purpose
symbex engine, and b) others rely on customized symbex
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Figure 1: The position of our work in network analysis.

engines [33, 39, 40]. However, neither has considered state-
ful program analysis, and neither can analyze probabilistic
network behaviors under random traffic distributions. In the
design section of our paper, we explain why significant inno-
vation is required to enable these new capabilities. In the eval-
uation section, we will a) reconfirm that customized symbex
engines (e.g., Vera [39]) cannot capture stateful behaviors; 1

and b) show that a naïve use of KLEE scales poorly.
Figure 1 positions our work against a broader set of ex-

isting work [41, 38, 14, 6, 17, 39, 33, 12, 34, 13] along two
dimensions: a) whether a technique analyzes network config-
urations or network programs, and b) whether it captures the
probabilistic nature of network behaviors. We note that this
figure does not comprehensively show all related work: P4
program analysis tools that do not rely on symbex [32, 37],
and new probabilistic network programming languages that
are designed from the ground up [36, 35, 16], are not shown.

3. Novelty

The design of P4wn involves three main challenges: a) com-
puting probabilities, b) handling stateful analysis, and c) an-
alyzing approximate data structures. We leverage a novel
integration of model counting, header space analysis, inter-
active queries, loop analysis, and abstract interpretation of
program behaviors, to address these challenges. A subset of
these techniques follow.

In order to compute the probability of a program behav-
ior, P4wn draws inspiration from two threads of work: header
space analysis (HSA) [27], and model counting [10]. P4wn
first relies on traditional symbex to collect header constraints
for program execution paths. It then analyzes the resulting
header space enclosed by these constraints, using model count-
ing to compute the volume of this multi-dimensional polytope
and its ratio to the entire header space. If a concrete network
trace is available, P4wn can also issue probability queries to
the trace to obtain a representative distribution.

The second key technique, telescoping, is designed to han-
dle stateful behaviors that take a very long packet sequence

1More concretely, Vera [39, 40] assumes that program state is always
embedded in packet headers, so the program itself is always stateless. When
given a stateful program, Vera sets all state variables to empty and performs a
stateless analysis.

to exercise. Naïvely applying symbolic execution to discover
such a trace would lead to state explosion. Our key insight
is that stateful network processing tends to have repeatable
patterns (e.g., periodic sampling). P4wn probes a complex
program using a short packet sequence to detect periodicity,
and quickly generalizes to a longer sequence to exercise the
target behaviors.

The third technique, greybox analysis, abstracts away the in-
ternal operations of approximate data structures, such as hash
tables, Bloom filters, and sketches, which are very common
to data plane systems. Leveraging the insight that these data
structures have well-established statistical properties, P4wn
creates very compact representations to enable symbex to scale
independent of the data structure size.

4. Main Artifacts

We have implemented P4wn in 6500 lines of code in C++ as
pluggable modules in KLEE [9], which will be released to
the community in open source. Our experimental setup and
scripts will also be made available in online repositories.

5. Key Results and Contributions

Our key results and contributions are:
• The first program profiler for stateful data plane programs,

and it can characterize their probabilistic behaviors for a
particular traffic distribution.

• A set of new techniques customized for data plane programs
that enables scalable symbolic execution.

• A new approach to adversarial testing that directly identi-
fies edge cases using their probabilities.

6. Why ASPLOS

We believe that ASPLOS is the ideal venue for our work,
because of its multidisciplinary nature:

1. Programmable data planes are an emerging hardware
architecture for network devices, and they are programmed
using domain-specific programming languages like P4. This
sets the context of our work.

2. Customizing program analysis techniques for network
programs has gained increased attention recently. Our work
significantly improves the state of the art.

3. Adversarial testing of complex programs is closely re-
lated to security research. Our work represents a new approach
to this goal.

7. Citation for Most Influential Paper Award

“P4wn was the first stateful and probabilistic profiler for then-
recent programmable data planes. Its draws inspiration from
a wide range of program analysis techniques, and customizes
them to complex data plane programs. The resulting tool
enables a comprehensive profiling of data plane programs that
prior tools cannot support.”
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