
Probabilistic Profiling of Stateful Data Planes for Adversarial Testing
(Extended Abstract)

Qiao Kang Jiarong Xing Yiming Qiu Ang Chen
Rice University

1. Motivation
Our work is motivated by the design of programmable
data planes [7] in recent switch models, which in turn has
sparked significant interest in customizing program analysis
and profiling techniques for data plane programs written in
P4 [39, 32, 15, 33, 12, 11, 37].

Programmable data planes. Traditional network devices
are hardwired for a fixed set of protocols. Recently, emerging
network hardware is reprogrammable in high-level languages
like P4 [7] to customize protocols and processing behaviors
for each network and device. For instance, programmable
data planes can support customized header fields and protocol
types, enabling new protocols to be deployed without hard-
ware upgrades. They can perform sophisticated operations
over header fields, enabling task offloading to the switches.
They can also implement stateful data structures in hardware,
making it possible for the network to adapt its behavior based
on past events. Commercial off-the-shelf switch models in-
clude Intel FlexPipe [4], Barefoot Tofino [1], Broadcom Tri-
dent 4 [2], and Cisco Silicon One [3].

Innovations with programmable data planes have quickly
evolved from implementing forwarding programs (e.g., IP
forwarding, MPLS, or customized network protocols) to sup-
porting far more sophisticated processing inside the network—
in this paper, we call these second-generation P4 programs
data plane systems. Example systems in this category include
key/value caching [24], load balancing [26, 21], link failure de-
tection [19], access control [25], covert channel detection [43],
likely with many more to come. Data plane systems have
more complex program behaviors than forwarding programs,
because they perform stateful processing. Consider the Blink
link failure detector [19]: it randomly samples a set of TCP
flows, tracks per-flow retransmissions, keeps a sliding window
for monitoring, and activates rerouting to backup paths in a
round-robin manner. Historical traffic patterns will directly
influence future processing decisions. In contrast, forwarding
programs contain no or little state, so their program behaviors
do not change based on past traffic patterns.

Program profiling and analysis. Observing that pro-
grammable data planes are essentially “complex programs”,
researchers have been actively adapting program analysis, pro-
filing, and verification techniques [39, 33, 12, 32, 37, 11] for
P4 programs. Our work is particularly related to symbolic exe-
cution tools for P4 programs [39, 33, 12] . Symbolic execution
(symbex) [29] is a principled program profiling technique that
aims to systematically explore all program execution paths,
analyze which types of inputs would exercise what execution

paths, and produce concrete test inputs for validation.
However, existing symbex tools for P4 programs [39, 33,

12] are restricted to stateless forwarding program analysis,
and they cannot support the second generation of data plane
systems. As motivated earlier, as the trend of in-network
offloading continues, many recent P4 programs have increas-
ingly complex state; exercising these stateful execution paths
requires identifying a precise sequence of packets. But today’s
P4 profilers [39, 33, 12] can only generate single-packet test
cases regardless of program state. This falls short in analyzing
stateful program behaviors that are driven by historical traffic
inputs. Our work fills this gap and develops support to analyze
stateful data plane systems.

Concurrently, our work is driven by another fundamental ob-
servation made by the program analysis community—network
behaviors are inherently probabilistic. Depending on the prop-
erties of interest, stochastic traffic patterns, random failures,
load balancing decisions, and many other factors would con-
tribute to this inherent non-determinism. In other words, ana-
lyzing network programs as if all properties are deterministic—
as early work in this space did [14, 17, 13]—simply does not
match the reality of complex networks. A promising line of
work has developed support for probabilistic network analy-
sis [41, 16, 36, 35, 38], but so far they only focus on analyzing
network configurations [41, 38], or designing new probabilis-
tic network programming languages [16, 36, 35]. Our work
shares the same motivation with these work, but it is the first
to enable probabilistic profiling of data plane systems.

Our application: Adversarial testing. We discuss several
applications in the main paper, but focus on demonstrating one
use case in depth: adversarial testing. In contrast to basic pro-
gram testing, adversarial testing distinguishes and specifically
focuses on edge cases, as they may likely lead to unexpected
behaviors. This is motivated by a long body of work that auto-
mates the finding of adversarial inputs for different types of
systems and scenarios [34, 8, 42, 28, 31, 5, 23, 30, 20, 22, 18].
The most related work includes a) using machine learning tech-
niques to find adversarial inputs for network protocols [18],
and using execution cost aware symbolic execution to find
high-cost test packet traces [34]. Compared to these work,
P4wn contributes a new approach to adversarial testing that
identifies edge cases by their probabilities.

2. The Position of Our Work

The most related to our work is the symbex tools for P4
programs: a) some rely on KLEE [15], a general-purpose
symbex engine, and b) others rely on customized symbex



Network configurations Network programs

Qualitative

Probabilistic

ARC

This 
Work

NetDice

MineSweeper

Batfish ERA

QARC

Vera

Netdiff CASTAN

P4pktgen

Earlier work

SIGCOMM + PLDI 2020

Earlier work

Figure 1: The position of our work in network analysis.

engines [33, 39, 40]. However, neither has considered state-
ful program analysis, and neither can analyze probabilistic
network behaviors under random traffic distributions. In the
design section of our paper, we explain why significant inno-
vation is required to enable these new capabilities. In the eval-
uation section, we will a) reconfirm that customized symbex
engines (e.g., Vera [39]) cannot capture stateful behaviors; 1

and b) show that a naïve use of KLEE scales poorly.
Figure 1 positions our work against a broader set of ex-

isting work [41, 38, 14, 6, 17, 39, 33, 12, 34, 13] along two
dimensions: a) whether a technique analyzes network config-
urations or network programs, and b) whether it captures the
probabilistic nature of network behaviors. We note that this
figure does not comprehensively show all related work: P4
program analysis tools that do not rely on symbex [32, 37],
and new probabilistic network programming languages that
are designed from the ground up [36, 35, 16], are not shown.

3. Novelty

The design of P4wn involves three main challenges: a) com-
puting probabilities, b) handling stateful analysis, and c) an-
alyzing approximate data structures. We leverage a novel
integration of model counting, header space analysis, inter-
active queries, loop analysis, and abstract interpretation of
program behaviors, to address these challenges. A subset of
these techniques follow.

In order to compute the probability of a program behav-
ior, P4wn draws inspiration from two threads of work: header
space analysis (HSA) [27], and model counting [10]. P4wn
first relies on traditional symbex to collect header constraints
for program execution paths. It then analyzes the resulting
header space enclosed by these constraints, using model count-
ing to compute the volume of this multi-dimensional polytope
and its ratio to the entire header space. If a concrete network
trace is available, P4wn can also issue probability queries to
the trace to obtain a representative distribution.

The second key technique, telescoping, is designed to han-
dle stateful behaviors that take a very long packet sequence

1More concretely, Vera [39, 40] assumes that program state is always
embedded in packet headers, so the program itself is always stateless. When
given a stateful program, Vera sets all state variables to empty and performs a
stateless analysis.

to exercise. Naïvely applying symbolic execution to discover
such a trace would lead to state explosion. Our key insight
is that stateful network processing tends to have repeatable
patterns (e.g., periodic sampling). P4wn probes a complex
program using a short packet sequence to detect periodicity,
and quickly generalizes to a longer sequence to exercise the
target behaviors.

The third technique, greybox analysis, abstracts away the in-
ternal operations of approximate data structures, such as hash
tables, Bloom filters, and sketches, which are very common
to data plane systems. Leveraging the insight that these data
structures have well-established statistical properties, P4wn
creates very compact representations to enable symbex to scale
independent of the data structure size.

4. Main Artifacts

We have implemented P4wn in 6500 lines of code in C++ as
pluggable modules in KLEE [9], which will be released to
the community in open source. Our experimental setup and
scripts will also be made available in online repositories.

5. Key Results and Contributions

Our key results and contributions are:
• The first program profiler for stateful data plane programs,

and it can characterize their probabilistic behaviors for a
particular traffic distribution.

• A set of new techniques customized for data plane programs
that enables scalable symbolic execution.

• A new approach to adversarial testing that directly identi-
fies edge cases using their probabilities.

6. Why ASPLOS

We believe that ASPLOS is the ideal venue for our work,
because of its multidisciplinary nature:

1. Programmable data planes are an emerging hardware
architecture for network devices, and they are programmed
using domain-specific programming languages like P4. This
sets the context of our work.

2. Customizing program analysis techniques for network
programs has gained increased attention recently. Our work
significantly improves the state of the art.

3. Adversarial testing of complex programs is closely re-
lated to security research. Our work represents a new approach
to this goal.

7. Citation for Most Influential Paper Award

“P4wn was the first stateful and probabilistic profiler for then-
recent programmable data planes. Its draws inspiration from
a wide range of program analysis techniques, and customizes
them to complex data plane programs. The resulting tool
enables a comprehensive profiling of data plane programs that
prior tools cannot support.”

2



References
[1] Barefoot Tofino. https://www.barefootnetworks.com/

technology/#tofino.
[2] Broadcom Trident 4. https://www.broadcom.com/blog/

trident4-and-jericho2-offer-programmability-at-scale.
[3] Cisco Silicon One. https://www.cisco.com/c/en/us/

solutions/service-provider/innovation/silicon-one.
html.

[4] Intel FlexPipe. https://www.intel.com/content/www/us/en/
products/network-io/ethernet/switches.html.

[5] Radu Banabic, George Candea, and Rachid Guerraoui. Automated
vulnerability discovery in distributed systems. In Proc. HotDep, 2011.

[6] Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David Walker. A
general approach to network configuration verification. In Proc. SIG-
COMM, 2017.

[7] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jen-
nifer Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George
Varghese, and David Walker. P4: Programming protocol-independent
packet processors. ACM SIGCOMM CCR, 44(3), 2014.

[8] Chad Brubaker, Suman Jana, Baishakhi Ray, Sarfraz Khurshid, and
Vitaly Shmatikov. Using Frankencerts for automated adversarial testing
of certificate validation in SSL/TLS implementations. In Proc. IEEE
Security and Privacy, 2014.

[9] Cristian Cadar, Daniel Dunbar, and Dawson R Engler. Klee: Unassisted
and automatic generation of high-coverage tests for complex systems
programs. In Proc. USENIX OSDI, 2008.

[10] Supratik Chakraborty, Kuldeep S. Meel, and Moshe Y. Vardi. A scal-
able approximate model counter. In Proc. CP, 2013.

[11] Dragos Dumitrescu, Radu Stoenescu, Lorina Negreanu, and Costin
Raiciu. bf4: towards bug-free P4 programs. In Proc. SIGCOMM, 2020.

[12] Dragos Dumitrescu, Radu Stoenescu, Matei Popovici, Lorina Negre-
anu, and Costin Raiciu. Dataplane equivalence and its applications. In
Proc. USENIX NSDI, 2019.

[13] Seyed K. Fayaz, Tushar Sharma, Ari Fogel, Ratul Mahajan, Todd Mill-
stein, Vyas Sekar, and George Varghese. Efficient network reachability
analysis using a succinct control plane representation. In Proc. OSDI,
2016.

[14] Ari Fogel, Stanley Fung, Luis Pedrosa, Meg Walraed-Sullivan, Ramesh
Govindan, Ratul Mahajan, and Todd Millstein. A general approach to
network configuration analysis. In Proc. NSDI, 2015.

[15] Lucas Freire, Miguel Neves, Lucas Leal, Kirill Levchenko, Alberto
Schaeffer-Filho, and Marinho Barcellos. Uncovering bugs in P4 pro-
grams with assertion-based verification. In Proceedings of the Sympo-
sium on SDN Research, page 4. ACM, 2018.

[16] Timon Gehr, Sasa Misailovic, Petar Tsankov, Laurent Vanbever, Pascal
Wiesmann, and Martin Vechev. Bayonet: Probabilistic inference for
networks. In Proc. PLDI, 2018.

[17] Aaron Gember-Jacobson, Raajay Viswanathan, Aditya Akella, and
Ratul Mahajan. Fast control plane analysis using an abstract represen-
tation. In Proc. SIGCOMM, 2016.

[18] Tomer Gilad, Nathan H. Jay, Michael Shnaiderman, Brighten Godfrey,
and Michael Schapira. Robustifying network protocols with adversarial
examples. In Proc. HotNets, 2019.

[19] Thomas Holterbach, Edgar Costa Molero, Maria Apostolaki, Alberto
Dainotti, Stefano Vissicchio, and Laurent Vanbever. Blink: Fast con-
nectivity recovery entirely in the data plane. In Proc. USENIX NSDI,
2019.

[20] Md. Endadul Hoque, Hyojeong Lee, Rahul Potharaju, Charles E. Kil-
lian, and Cristina Nita-Rotaru. Adversarial testing of wireless routing
implementations. In Proc. WiSec, 2013.

[21] Kuo-Feng Hsu, Ryan Beckett, Ang Chen, Jennifer Rexford, Praveen
Tammana, and David Walker. Contra: A programmable system for
performance-aware routing. In Proc. NSDI, 2020.

[22] Syed Rafiul Hussain, Omar Chowdhury, Shagufta Mehnaz, and Elisa
Bertino. LTEinspector: A systematic approach for adversarial testing
of 4G LTE. In Proc. NDSS, 2018.

[23] Samuel Jero, Xiangyu Bu, Hamed Okhravi, Cristina Nita-Rotaru,
Richard Skowyra, and Sonia Fahmy. BEADS: Automated attack dis-
covery in OpenFlow-based SDN systems. In Proc. RAID, 2017.

[24] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé, Jeongkeun Lee,
Nate Foster, Changhoon Kim, and Ion Stoica. NetCache: Balancing
key-value stores with fast in-network caching. In Proc. SOSP, 2017.

[25] Qiao Kang, Lei Xue, Adam Morrison, Yuxin Tang, Ang Chen, and
Xiapu Luo. Programmable in-network security for context-aware
BYOD policies. In Proc. USENIX Security, 2020.

[26] Naga Katta, Mukesh Hira, Changhoon Kim, Anirudh Sivaraman, and
Jennifer Rexford. HULA: Scalable load balancing using programmable
data planes. In Proc. SOSR, 2016.

[27] Peyman Kazemian, George Varghese, and Nick McKeown. Header
space analysis: Static checking for networks. In Proc. SIGCOMM,
2012.

[28] Charles Killian, Karthik Nagara, Salman Pervez, Ryan Braud, James W.
Anderson, and Ranjit Jhala. Finding latent performance bugs in systems
implementations. In Proc. FSE, 2010.

[29] James C King. Symbolic execution and program testing. Communica-
tions of the ACM, 19(7):385–394, 1976.

[30] Hyojeong Lee, Jeff Seibert, Endadul Hoque, Charles Killian, and
Cristina Nita-Rotaru. Turret: A platform for automated attack finding
in unmodified distributed system implementations. In Proc. ICDCS,
2014.

[31] Hyojeong Lee, Jeff Seibert, Charles Killian, and Cristina Nita-Rotaru.
Gatling: Automatic attack discovery in large-scale distributed systems.
In Proc. NDSS, 2012.

[32] Jed Liu, William Hallahan, Cole Schlesinger, Milad Sharif, Jeongkeun
Lee, Robert Soulé, Han Wang, Călin Cascaval, Nick McKeown, and
Nate Foster. p4v: Practical verification for programmable data planes.
In Proc. ACM SIGCOMM. ACM, 2018.

[33] Andres Nötzli, Jehandad Khan, Andy Fingerhut, Clark Barrett, and
Peter Athanas. P4pktgen: Automated test case generation for P4
programs. In Proc. ACM SOSR, 2018.

[34] Luis Pedrosa, Rishabh Iyer, Arseniy Zaostrovnykh, Jonas Fietz, and
Katerina Argyraki. Automated synthesis of adversarial workloads for
network functions. In Proc. ACM SIGCOMM, pages 372–385. ACM,
2018.

[35] Steffen Smolka, Praveen Kumar, Nate Foster, Dexter Kozen, and
Alexandra Silva. Cantor meets scott: Semantic foundations for proba-
bilistic networks. In Proc. POPL, 2017.

[36] Steffen Smolka, Praveen Kumar, David M. Kahn, Nate Foster, Justin
Hsu, Dexter Kozen, and Alexandra Silva. Scalable verification of
probabilistic networks. In Proc. PLDI, 2019.

[37] Hardik Soni, Myriana Rifai, Praveen Kumar, Ryan Doenges, and Nate
Foster. Composing dataplane programs with µp4. In Proc. SIGCOMM,
2020.

[38] Samuel Steffen, Timon Gehr, Petar Tsankov, Laurent Vanbever, and
Martin Vechev. Probabilistic verification of network configurations. In
Proc. SIGCOMM, 2020.

[39] Radu Stoenescu, Dragos Dumitrescu, Matei Popovici, Lorina Negre-
anu, and Costin Raiciu. Debugging P4 programs with Vera. In Proc.
ACM SIGCOMM, 2018.

[40] Radu Stoenescu, Matei Popovici, Lorina Negreanu, and Costin Raiciu.
Symnet: scalable symbolic execution for modern networks. In Proc.
SIGCOMM, 2016.

[41] Kausik Subramanian, Anubhavnidhi Abhashkumar, Loris D’Antoni,
and Aditya Akella. Detecting network load violations for distributed
control planes. In Proc. PLDI, 2020.

[42] Max von Hippel, Cole Vick, Stavros Tripakis, and Cristina Nita-Rotaru.
Automated attacker synthesis for distributed protocols. In Proc. Safe-
Comp, 2020.

[43] Jiarong Xing, Qiao Kang, and Ang Chen. Netwarden: Mitigating net-
work covert channels while preserving performance. In Proc. USENIX
Security, 2020.

3

https://www.barefootnetworks.com/technology/#tofino
https://www.barefootnetworks.com/technology/#tofino
https://www.broadcom.com/blog/trident4-and-jericho2-offer-programmability-at-scale
https://www.broadcom.com/blog/trident4-and-jericho2-offer-programmability-at-scale
https://www.cisco.com/c/en/us/solutions/service-provider/innovation/silicon-one.html
https://www.cisco.com/c/en/us/solutions/service-provider/innovation/silicon-one.html
https://www.cisco.com/c/en/us/solutions/service-provider/innovation/silicon-one.html
https://www.intel.com/content/www/us/en/products/network-io/ethernet/switches.html
https://www.intel.com/content/www/us/en/products/network-io/ethernet/switches.html

	Motivation
	The Position of Our Work
	Novelty
	Main Artifacts
	Key Results and Contributions
	Why ASPLOS
	Citation for Most Influential Paper Award

