
Incremental CFG Patching for Binary Rewriting
Extended Abstract

Xiaozhu Meng∗1 and Weijie Liu†2

1Department of Computer Science, Rice University
2Luddy School of Informatics, Computing, and Engineering, Indiana University Bloomington

1. Motivation
Binary rewriting instruments compiled executables and li-
braries without their source code and has significant appli-
cation to software security [5, 18, 11, 12], software correct-
ness [8]. and performance analysis [17, 14, 15]. Current
binary rewriting techniques either rely on several limiting as-
sumptions on binaries to achieve complete binary analysis to
perform IR lifting, or patch individual instructions without uti-
lizing any binary analysis, which leads to prohibitive runtime
overhead.

In this paper, we design a new general binary rewriting
approaching, incremental CFG patching, to balance the run-
time overhead and binary rewriting generality. Our approach
supports multiple architectures, including x86-64, ppc64le,
and aarch64and multiple programming languages, including
C/C++, Fortran, Rust and Go.

2. Limitations of the State of the Art
A rich literature of binary rewriting research is devoted to
improving the runtime overhead, reliability, and scalability of
binary rewriting [13, 2, 6, 16, 7].

Recent approaches for binary rewriting have taken two op-
posite directions. On one hand, researchers utilize meta-data
available in binaries to perform complete binary analysis to
lift binaries to IR and then re-generate new ones; we call this
approach as IR lowering. Egalito [16] and RetroWrite [6] are
two examples in this category, leveraging relocation informa-
tion in Position Independent Executable (PIE) and achieving
binary rewriting with near to zero overhead in their empirical
evaluation.

However, this IR lowering approach has two major disad-
vantages. First, complete analysis is an undecidable problem
in general and is difficult to achieve in many practical use
cases. Tools based on IR lowering do not support source lan-
guage specific features such as C++ exceptions and .vtab

function tables in Go binaries even when these programs are
compiled into PIE. In other words, PIE does not necessarily
make full binary analysis easy. In addition, while PIE is the fu-
ture trend, position dependent code cannot be ignored. Current
supercomputers and servers typically run Red Hat 7 systems,
on which PIE is not the default. Red Hat 7’s maintenance
support is scheduled to end in 2024 [10]. Even on Linux dis-
tributions whose default GCC compilers emit PIE by default,
vendor specific compilers may make a different decision: on

∗xm13@rice.edu
†weijliu@iu.edu

Intel Dev Cloud, we have Ubuntu 18.04, whose system GCC
compiler will emit PIE; but the Intel toolchain on that system
will emit position dependent code.

Second, IR lowering presents an “all-or-nothing” dilemma
to its users. As it must lift all binary functions to IR, if one
of the functions in binary contains rare, difficult binary code
construct, the whole binary rewriting may fail. IR lowering
by design does not allow leaving certain functions untouched
while rewriting the other ones. This “all-or-nothing” tradeoff
is reasonable for security applications such as software hard-
ening [5, 12, 11]. It would not generate a partially hardened
binary that brings a false sense of security. However, this
tradeoff may not be ideal for other application domains. For
example, for performance analysis, the users may have known
that certain functions are not the bottleneck, and want to focus
on a subset of the functions in the binary.

On the opposite to IR lowering is instruction patching,
which does not use any binary analysis, to achieve reliable
binary rewriting. E9Patch [7] devise multiple instruction se-
quences as trampolines to transfer control flow from original
code to instrumentation. This approach has the advantage of
being able to handle source language specific features and al-
lowing partial binary rewriting. However, it incurs prohibitive
runtime overhead as every instrumented instruction will re-
quire a branch from original code to instrumentation and a
branch back to original code: it incurs over 100% runtime
overhead when instrumenting basic blocks with empty instru-
mentation. In addition, this approach does not guarantee high
level instrumentation semantics. For example, instruction
patching cannot ensure the semantics of function entry instru-
mentation, which should be executed once and only once when
a function is called. If the function entry address is inside a
loop, without constructing the CFG and modifying the back
edge of the loop, the function entry instrumentation will be
executed per loop iteration [2].

3. Key Insights
The basic idea of our approach is to use trampolines to catch
control flow that we cannot accurately rewrite, which aims for
generality and partial instrumentation, and use binary analysis
to identify the necessary places to install trampolines and
rewrite as much control flow as possible, which helps reduce
runtime overhead.

The foundation of our approach is a trampoline placement
analysis. We define control flow landing (CFL) blocks as
the basic block where control flow can be transferred from
instrumentation back to the original code, and establish that it



is sufficient to install trampolines at only CFL blocks.
A key reason why code patching incurs high overhead is due

to the control flow bouncing between the original code and the
rewritten code. If we can reduce the number of CFL blocks,
we can then reduce this control flow bouncing, and thus reduce
runtime overhead. This insight guides us to remove as many
CFL blocks as possible. Two categories of CFL blocks are (1)
jump table target blocks, which can be removed if we rewrite
jump tables so that intra-procedural indirect jumps would stay
in the rewritten code, and (2) function entry blocks, which can
be removed if we rewrite function pointers.

To handle language specific features such as C++ excep-
tions and stack unwinding in Go’s runtime used for memory
garbage collection and dynamic stack growing, an existing
approach is to emulate a call instruction with a 3-instruction se-
quence [3, 1], which puts the return address of the original call
instruction to the stack. In this way, stack unwinding can be
performed normally. However, this requires emulating every
function call and we observe over 30% of runtime overhead by
just emulating function calls, and also cause call fall-through
blocks to be CFL blocks as the original return addresses will
be pushed to the stack.

Inspired by dynamic binary translation used for dynamic
instrumentation, we use a runtime routine that translates the
return address from the rewritten code to the corresponding
original call site before the return address is used for unwind-
ing. In this way, we no longer need to emulate function calls
and call fall-through blocks are no longer CFL blocks.

4. Main Artifacts
First, we design a new static analysis, Trampoline Placement
Analysis, which places trampolines at carefully selected loca-
tions to reduce the use of trap based trampolines. The analysis
tolerates over-approximated control flow, which may lead to
higher runtime overhead, and fails in a safe way for functions
that have under-approximated control flow.

Second, we provide three binary rewriting modes that
rewrite (1) direct control flow, (2) intra-procedural indirect
control flow, and (3) inter-procedural indirect control flow. We
characterize the assumptions made by binary analysis used to
rewrite these types of control flow and assess their impacts on
binary rewriting when the assumptions are violated. This as-
sessment leads to several improvements for rewriting indirect
control flow, and gives users an understanding of choices for
binary rewriting, avoiding the “all-or-nothing” scenario.

Third, we design Runtime Return Address (RA) Translation
to translate the return address from the rewritten code to the
corresponding original call site before the return address is
used for unwinding. This technique enables low overhead
binary rewriting for C++ exceptions and Go binaries.

Fourth, we design new trampoline instruction sequences
that have varied branching ranges and lengths to further avoid
trap based trampolines. All our new trampoline sequences
are position independent, which ensures that our techniques

work with shared libraries and PIEs. Existing work focuses
designing trampoline instruction sequences for x86-64 [4, 7].
We learn from existing work and also design new trampolines
for ppc64leand aarch64.

We implement incremental CFG patching as an extension to
the Dyninst binary analysis and instrumentation tool suite [9]
and we will work with Dyninst developers to upstream our
work.

5. Key Results and Contributions

We evaluated our approaches with SPEC 2017 CPU, Firefox’s
libxul.so (includes code written in C, C++, and Rust), and
Docker (written in Go). We can successfully rewrite over
99.41% of the total functions in binaries from SPEC CPU
2017, 99.93% functions in libxul.so and all functions in
Docker. The average runtime overhead incurred by our ap-
proach is under 1% for SPEC CPU 2017 and 2% for Firefox.

We present a case study with Diogense [14, 15], which is
a tool for automatically identifying and fixing unnecessary
CPU/GPU synchronization and duplicated CPU/GPU memory
transfers. Diogenes has a step that uses Dyninst to instrument
Nvidia runtime driver libcuda.so to identify the hidden syn-
chronization function in the driver. We speed up the identifica-
tion from 30 minutes to 30 seconds by replacing mainstream
Dyninst with our implementation.

In summary, this work makes the following contributions:
• Incremental CFG patching, a general binary rewriting ap-

proach that balances runtime overhead and generality, which
supports three architectures and five source programming
languages;

• Trampoline placement analysis that reduces trap-based tram-
polines and tolerates control flow over-approximation;

• An assessment of imprecision in binary analysis for rewrit-
ing indirect control flow and improvement to binary analysis
for binary rewriting

• Runtime RA translation, an efficient mechanism to rewrite
stack unwinding, which is necessary for programs that use
C++ exceptions and programs written in Go;

• An implementation of our new techniques in Dyninst and a
case study illustrating how our new techniques speed up an
existing software tool.

6. Why ASPLOS

This paper describes a new binary rewriting approach, which
supports multiple architectures and programming languages.
Our approach utilizes specific features of the ISAs to de-
sign position independent trampolines, and efficiently address
language specific features such as C++ exceptions and Go’s
builtin stack unwinding. While we attempt to avoid trap based
trampolines, the interaction with operating systems is still
necessary as a last resort. We also show case the value of
our approach with an instrumentation based tool that analyzes
CPU/GPU synchronization.

2



References
[1] Erick Bauman, Zhiqiang Lin, and Kevin W Hamlen. Superset disassem-

bly: Statically rewriting x86 binaries without heuristics. In Network
and Distributed System Security Symposium (NDSS), San Diego, CA,
USA, Feb. 2018.

[2] Andrew R. Bernat and Barton P. Miller. Structured binary editing with
a cfg transformation algebra. In 2012 19th Working Conference on
Reverse Engineering (WCRE), page 9–18, Kingston, ON, Canada, Oct.
2012.

[3] Andrew R. Bernat, Kevin A. Roundy, and Barton P. Miller. Efficient,
sensitivity resistant binary instrumentation. In The International Sym-
posium on Software Testing and Analysis (ISSTA), Toronto, Canada,
July 2011.

[4] Buddhika Chamith, Bo Joel Svensson, Luke Dalessandro, and Ryan R
Newton. Instruction punning: Lightweight instrumentation for x86-64.
In Proceedings of the 38th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, pages 320–332, 2017.

[5] Thurston HY Dang, Petros Maniatis, and David Wagner. The perfor-
mance cost of shadow stacks and stack canaries. In Proceedings of the
10th ACM Symposium on Information, Computer and Communications
Security, pages 555–566. ACM, 2015.

[6] Sushant Dinesh, Nathan Burow, Dongyan Xu, and Mathias Payer.
Retrowrite: Statically instrumenting cots binaries for fuzzing and sani-
tization. In 41st IEEE Symposium on Security and Privacy (Oakland),
May 2020.

[7] Gregory J. Duck, Xiang Gao, and Abhik Roychoudhury. Binary rewrit-
ing without control flow recovery. In 41st ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI), Lon-
don, UK, June 2020.

[8] Yizi Gu and John Mellor-Crummey. Dynamic data race detection for
openmp programs. In International Conference for High Performance
Computing, Networking, Storage, and Analysis (SC), Dallas, Texas,
Nov. 2018.

[9] Paradyn Project. Dyninst: Putting the Performance in High Perfor-
mance Computing, http://www.dyninst.org.

[10] Red Hat. Product Life Cycles, https://https:
//access.redhat.com/product-life-cycles?product=
Red%20Hat%20Enterprise%20Linux, accessed Aug. 12, 2020.

[11] V. v. d. Veen, E. Göktas, M. Contag, A. Pawoloski, X. Chen, S. Rawat,
H. Bos, T. Holz, E. Athanasopoulos, and C. Giuffrida. A tough call:
Mitigating advanced code-reuse attacks at the binary level. In 2016
IEEE Symposium on Security and Privacy (SP), San Jose, CA, USA,
May 2016.

[12] Victor van der Veen, Dennis Andriesse, Enes Göktaş, Ben Gras, Li-
onel Sambuc, Asia Slowinska, Herbert Bos, and Cristiano Giuffrida.
Practical context-sensitive cfi. In 22nd ACM SIGSAC Conference on
Computer and Communications Security (CCS), Denver, Colorado,
USA, 2015.

[13] Ruoyu Wang, Yan Shoshitaishvili, Antonio Bianchi, Aravind Machiry,
John Grosen, Paul Grosen, Christopher Kruegel, and Giovanni Vigna.
Ramblr: Making reassembly great again. In 24th Annual Symposium
on Network and Distributed System Security (NDSS), San Diego, CA,
USA, Feb. 2017.

[14] Benjamin Welton and Barton P. Miller. Diogenes: Looking for an
honest cpu/gpu performance measurement tool. In Proceedings of the
International Conference for High Performance Computing, Network-
ing, Storage and Analysis, SC ’19, 2019.

[15] Benjamin Welton and Barton P. Miller. Identifying and (automatically)
remedying performance problems in cpu/gpu applications. In 34th
ACM International Conference on Supercomputing (ICS), Barcelona,
Spain, June 2020.

[16] David Williams-King, Hidenori Kobayashi, Kent Williams-King,
Graham Patterson, Frank Spano, Yu Jian Wu, Junfeng Yang, and
Vasileios P. Kemerlis. Egalito: Layout-agnostic binary recompilation.
In Twenty-Fifth International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), Lausanne,
Switzerland, March 2020.

[17] David Williams-King and Junfeng Yang. Codemason: Binary-level
profile-guided optimization. In 3rd ACM Workshop on Forming an
Ecosystem Around Software Transformation, FEAST’19, Nov. 2019.

[18] Mingwei Zhang and R. Sekar. Control flow integrity for cots binaries.
In Presented as part of the 22nd USENIX Security Symposium (USENIX
Security 13), 2013.

3

https://https://access.redhat.com/product-life-cycles?product=Red%20Hat%20Enterprise%20Linux
https://https://access.redhat.com/product-life-cycles?product=Red%20Hat%20Enterprise%20Linux
https://https://access.redhat.com/product-life-cycles?product=Red%20Hat%20Enterprise%20Linux

	Motivation
	Limitations of the State of the Art
	Key Insights
	Main Artifacts
	Key Results and Contributions
	Why ASPLOS

