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1. Motivation

Fast, byte-addressable, persistent main memory (PM) makes
it possible to build complex data structures that can survive
system failures. PM offers numerous potential benefits in-
cluding improved memory system capacity, lower-latency and
higher-bandwidth storage, and a unified programming model
for persistent and volatile program state. However, it also
poses a host of novel challenges. For instance, it requires
memory controller and ISA support, new operating systems
facilities, and it places large, novel burdens on programmers.

PM programming combines well-known programming chal-
lenges like locking, memory management, and pointer safety
with novel PM-specific bug types. It also requires logging
updates to PM to facilitate recovery after a crash. A misstep
in any of these areas can corrupt data, leak resources, prevent
successful recovery after a crash. Existing PM libraries in a
variety of languages – C, C++, Go, Java – simplify some of
these problems [6, 4, 2, 3, 7], but they still require the program-
mer to learn (and flawlessly apply) complex rules to ensure
correctness. Opportunities for data-destroying bugs abound.

The challenges of programming correctly with PM are
among the largest potential obstacles to wide-spread adop-
tion of PM and our ability to fully exploit its capabilities. If
programmers cannot reliably write and modify code that cor-
rectly and safely modifies persistent data structures, PM will
be hobbled as a storage technology.

Some of the bugs that PM programs suffer from have been
the subject of years of research and practical tool building.
The solutions and approaches to these problems range from
programming disciplines to improved library support to de-
bugging tools to programming language facilities.

Given the enhanced importance of memory and concurrency
errors in PM programming, it makes sense to adopt the most
effective and reliable mechanisms available for avoiding them.

2. Limitations of the State of the Art

Existing PM programming libraries like PMDK [6], provide
the capability to avoid the errors described above, but they
rely on the programmer correctly apply those capabilities.
Identifying errors relies to regression tests, stress tests, and
code review, all of which have serious drawbacks, especially
for subtle coding errors that can lead to non-deterministic,
rarely exercised, and hard-to-reproduce bugs.

Recently developed languages like Rust [1] have shown that
static analysis can detect and prevent many types of complex,
subtle bugs (e.g., locking and memory allocation). However,
these languages do not include specific support for PM.

3. Key Insights

Our work relies on two key insights: First, nearly all PM-
related safety properties are amenable to static analysis and
checking. In particular, PM pointer and memory allocation
safety are similar in many respects to their conventional,
volatile memory counterparts.

Rust’s type system enforces safety invariants for volatile
memory and the same facilities can be adapted to statically
enforce PM safety invariants as well. The result should be
less testing, fewer bugs, and faster code, since the system can
avoid dynamic checks in most instances.

4. Main Artifacts

Corundum1 [5] is a Rust-based library (or “crate”) with an id-
iomatic PM programming interface and leverages Rust’s type
system to statically avoid most common PM programming
bugs. Corundum lets programmers develop persistent data
structures using familiar Rust constructs and have confidence
that they maintain important PM safety properties (e.g., per-
sistent pointer safety, race-freedom, and non-leaking memory
allocation). Table 2 compares an example of insert operation
to a sorted linked-list written in both Rust and Corundum to
show the idiomaticity.

INS CHK PUT GET INS CHK REM RAND

BST KVStore B+Tree

Ex
ec

ut
io

n 
Ti

m
e 

(m
s)

PMDK Corundum

12000
10000
8000
6000
4000
2000

      0

Figure 1: Performance comparison between Corundum and
PMDK

5. Key Results and Contributions

We have implemented Corundum and found its performance
to be as good or better than Intel’s widely-used PMDK library.
Corundum enforces five invariants on PM programs:
1. PM pools only contain data that can be safely persistent.
2. Pointers within a pool are always valid. Pointers between

pools or from persistent memory to volatile memory are
not possible. Pointers from volatile memory into a pool are
safe. Closing a pool does not result in unsafe pointers.

1The paper is published in the 26th international conference on Architec-
tural Support for Programming Languages and Operating Systems (ASPLOS),
2021. It is available in the ACM Digital Library.
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NV-Heaps [4] M D S M S S M RC
Mnemosyne [7] M D S M S S M M
libpmemobj [6] M D M M M M M M
libpmemobj++ [6] M D M M M S M M
NVM Direct [2] D D S D M S/M S/M M
Atlas [3] M M M M M S M GC

Corundum S S S D S S S RC

Table 1: Corundum more static checks than other PMEM libraries, using them to meet most of its design goals. (’S’=Static,
’D’=Dynamic, ’M’=Manual, ’GC’=Garbage Collection, ’RC’=Reference Counting)

1 use std::rc::*;
2 use std::cell::*;
3 struct Node { val: i32,
4 nxt: Rc<RefCell<Option<Node>>>
5 }
6 fn insert(&self, val: i32) {
7

8 let mut nxt = self.nxt.borrow_mut();
9 if let Some(n) = &*nxt {

10 if n.val > val {
11 *nxt = Some(Node { val,
12 nxt: self.nxt.clone()
13 })
14 } else { n.insert(val); }
15 } else {
16 *nxt = Some(Node { val,
17 nxt: Rc::new(RefCell::new(None))
18 })
19 }
20

21 }

1 use crndm::default::*;
2

3 struct Node { val: i32,
4 nxt: Prc<PRefCell<Option<Node>>>
5 }
6 fn insert(&self, val: i32) {
7 transaction(|j| {
8 let mut nxt = self.nxt.borrow_mut(j);
9 if let Some(n) = &*nxt {

10 if n.val > val {
11 *nxt = Some(Node { val,
12 nxt: self.nxt.pclone(j)
13 })
14 } else { n.insert(val); }
15 } else {
16 *nxt = Some(Node { val,
17 nxt:Prc::new(PRefCell::new(None,j),j)
18 })
19 }
20 }).unwrap()
21 }

Table 2: Comparing the implementation of insert operation in Rust and Corundum

3. Transactions are atomic with respect to both persistent and
volatile data. It is not possible to modify persistent data
without logging it.

4. There are no data races or unsynchronized access to shared
persistent data.

5. Transactions provide isolation so that updates are not visi-
ble until the transaction commits.

In almost every case, the compiler can statically detect vi-
olations of these invariants. Table 1 compares Corundum’s
approach to preventing errors with other PM libraries. Corun-
dum has much wider static coverage than any existing system.

We compare Corundum’s performance to PMDK (Intel’s op-
timized PM library) in Figure 1. The data show that Corundum
is as fast or faster than PMDK while still providing stronger
safety guarantees.
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