C11Tester: A Fuzzer for C/C++ Atomics
Extended Abstract

Weiyu Luo
weiyul7 @uci.edu
University of California, Irvine

1. Motivation

The C/C++11 standards added a weak memory model with
support for low-level atomics operations [3, 7] that allows
developers to craft efficient concurrent data structures that
scale better or provide stronger liveness guarantees than lock-
based data structures. The potential benefits of atomics can
lure both experts and novice developers to use them. However,
writing correct concurrent code using these atomics operations
is extremely difficult.

Simply executing concurrent code is not an effective ap-
proach to testing. Exposing concurrency bugs often requires
executing a specific path that might only occur when the pro-
gram is heavily loaded during deployment, executed on a
specific processor model, or compiled with a specific com-
piler. Thus, it is necessary to develop tools to help test for
concurrency bugs.

2. Limitations of the State of the Art

The state of the art works falls into two categories. The first
category is model checking, which can be useful for finding
bugs in small unit tests of concurrent data structures. Recently,
much work has been done on developing sophisticated partial
order reduction algorithms to scale model checkers to longer
executions [1, 2, 4, 5, 6, 8, 9, 12]. Despite all of this work,
model checkers still do not scale beyond short executions due
to fundamental limitations that arise because the number of
concurrent executions grows exponentially with the execu-
tion length. This limits the applicability of model checking
to small unit tests—it is extremely difficult to scale to full
applications or even the larger unit tests that are required to
test functionality such as resizing a data structure.

The second category of prior work is race detectors. The
tsanl1 [10] and tsanl1rec [11] data race detectors have been
developed for a modified version of the C/C++ memory model,
but they implement a significantly stronger memory model
than the real C/C++ memory model. Both of these tools
can only generate a subset of the executions allowed by the
C/C++ memory model. In particular, they can only generate
executions in which the writes are ordered in the same order
that they process them. More precisely, they can only generate
executions in which b U sc U rfUmo is acyclic and thus miss
potential bug-revealing executions that both are allowed by the
C/C++ memory model and can be produced by mainstream
hardware including ARM processors. We have example bugs
that tsan11 and tsan1 Irec miss because they involve executions

16

Brian Demsky
bdemsky @uci.edu
University of California, Irvine

atomic<int> x(0), y(0);

void threadA() {
memory_order_relaxed) ;
memory_order_relaxed) ;

x.store (1,

y.store (1,
}
void threadB() {

rl = y.load(memory_order_relaxed);
memory_order_relaxed) ;
rl);

x.store (2,
printf("rl =
}
void threadC() {
r2 = x.load(memory_order_relaxed);
(

od\n",

r3 = x.load(memory_order_relaxed);
printf("r2 = %d\n", rl);
printf("r3 = %d\n", r2);

}

Figure 1: Example of execution that tsan11 and tsaniirec
miss. Both tools cannot generate the execution where r1=1,
r2=2,and r3=1.

with cycles in hb U sc U rfUmo, while C11Tester can detect
these bugs.

Figure | presents an example of an execution that tsanl 1
and tsanl lrec cannot generate, but C11Tester can generate.
For tsanl1 and tsanlIrec, if r1=1, then the hbUrf edges in this
example force the store at line 4 to be modification ordered
before the store at line 9, and hence, the result that r2=2
and r3=1 is not allowed. To forbid this execution under the
C/C++ memory model and ARM/PowerPC processors, the
store to y must be a release and the load from y must be an
acquire. This example shows a problematic pattern for real
world code, because the same pattern appears in commonly
used data structures such as the write-lock of a reader-writer
lock and the writer of a seqlock. Tsanl1 and tsanl Irec would
not find bugs in which the wrong memory orders were used
in a write_lock method from a reader-writer lock if the lock
protected a critical section with atomic operations or in the
writer of a seqlock. C11Tester can find such bugs.

Cl1Tester’s constraint-based approach to modification or-
der supports a much larger fragment of the C/C++ memory
model than tsanl1 and tsanl lrec. The memory model frag-
ment that C11Tester supports requires #b U sc U rf be acyclic.
Cll1Tester fully supports the C/C++ memory model for re-
lease, acquire, and sequentially consistent atomics. C11Tester
adds minor constraints to forbid out-of-thin-air (OOTA) ex-
ecutions for relaxed atomics. Furthermore, the constraints
that C11Tester places on the C/C++ memory model to forbid
OOTA executions appear to incur minimal overheads on exist-
ing ARM processors [13] while x86 and PowerPC processors
already implement these constraints.



Finally, some prior race detectors [10] rely on the oper-
ating system scheduler to control the scheduling of threads
and do not support controlled scheduling nor can they easily
reproduce the same schedule.

3. Key Insights

This paper has the key insight of taking a constraint-based
approach to implement the C/C++ memory model’s modifi-
cation order (cache coherence order). This approach enables
Cl1Tester to support a much larger fragment of the C/C++
memory model. The second key insight is that clock vectors
can be used to track constraints on the modification order rela-
tion much more efficiently than previous approaches, making
a constraint-based approach to modification order feasible for
executions with millions of atomic operations.

These insights advance the state of the art because they
enable Cl1Tester to handle a much larger fragment of the
C/C++ memory model at same performance as previous tools
that only handle a smaller fragment of the memory model.

4. Main Artifacts

Our main artifacts are (1) a new fuzzing algorithm for the
C/C++11 memory model that can efficiently support a large
fragment of the C/C++ memory model and (2) an implementa-
tion of this artifact in the C11Tester fuzzer. We then evaluate
the algorithm on several benchmark applications and compare
our results to tsan11 and tsanllrec.

5. Key Results and Contributions

This paper presents a new constraint-based approach to fuzzing
C/C++ programs with atomics that can produce executions
from a much larger fragment of the C/C++ memory model
than was previous possible.

This paper makes the following contributions:

e It presents a fuzzing tool for the C/C++ memory model that
can fuzz full programs.

e It presents a fuzzing tool that supports a larger fragment of
the C/C++ memory model, i.e., hb U sc U rf being acyclic,
than previous fuzzing tools.

e It presents a constraint-based approach to the C/C++ modifi-
cation order relation. This technique enables it to efficiently
support the larger fragment of the C/C++ memory model.

e It develops a new technique to allow fibers to provide ef-
ficient controlled scheduling for threads while supporting
thread-local storage that is required by essentially all real
applications.

o It presents techniques for reducing the memory usage of the
fuzzer.

o It integrates this approach with a data race detection algo-
rithm.

e It evaluates C11Tester on several applications and compares
against both tsanl1 and tsanlIrec. It shows that C11Tester
can find bugs that tsanl1 and tsanllrec miss. It shows

that C11Tester has the same performance or is faster than

previous race detectors that support controlled execution.

Cl1Tester improves over previous work by supporting a
larger fragment of the C/C++ memory model. This larger
fragment is important because it can catch more bugs than
previous work and thus provides developers with stronger
assurances that their code will work correctly when deployed.

Prior data race detection tools could only generate execu-
tions in which the modification order was consistent with
the order the tools processed memory operations. C11Tester
overcomes the limitations of previous work by developing
an efficient constraint-based approach to implementing mod-
ification order that allows Cl1Tester to efficiently generate
executions in which the modification order is not constrained
to be the same order C11Tester processes the statements.

6. Why ASPLOS

This paper touches on all three areas of ASPLOS: architec-
ture, programming languages, and operating systems. Memory
models arise primarily because of optimizations from the archi-
tecture community and to a lesser degree due to optimizations
in compilers. System software often makes use of the atomic
primitives, and thus the systems community is a prime candi-
date to benefit from C11Tester. Finally, C11Tester contributes
new techniques to the programming language community.

7. Summary

This paper shows how to efficiently fuzz programs with respect
to a larger fragment of the C/C++ memory model than was
previously possible. The paper develops new techniques that
enable it to efficiently support a constraint-based approach
to handling the modification order from the C/C++ memory
model. The technique is demonstrated to be effective on a
range of C/C++ software that makes use of atomic operations.

References

[1] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Bengt Jonsson, and
Tuan Phong Ngo. Optimal stateless model checking under the release-
acquire semantics. Proceedings of the ACM on Programming Lan-
guages, 2(O0PSLA):135:1-135:29, October 2018.

Jade Alglave, Luc Maranget, and Michael Tautschnig. Herding cats:
Modelling, simulation, testing, and data mining for weak memory.
ACM Transactions on Programming Languages and Systems, 36(2):7:1—
7:74, July 2014.

Pete Becker. ISO/IEC 14882:2011, Information technology — program-
ming languages — C++, 2011.

Jasmin Christian Blanchette, Tjark Weber, Mark Batty, Scott Owens,
and Susmit Sarkar. Nitpicking C++ concurrency. In Proceedings of
the 13th International ACM SIGPLAN Symposium on Principles and
Practices of Declarative Programming, pages 113-124, 2011.

Brian Demsky and Patrick Lam. SATCheck: SAT-directed stateless
model checking for SC and TSO. In Proceedings of the 2015 Con-
ference on Object-Oriented Programming, Systems, Languages, and
Applications, pages 20-36, October 2015.

[6] Jeff Huang. Stateless model checking concurrent programs with max-
imal causality reduction. In Proceedings of the 2015 Conference on
Programming Language Design and Implementation, pages 165-174,
2015.

ISO JTC. ISO/IEC 9899:2011, Information technology — programming
languages — C, 2011.

[2

[

3

[t}

[4

=

[5

—_

[7

—



[8]

[9]

(10]

(11]

[12]

[13]

Michalis Kokologiannakis, Ori Lahav, Konstantinos Sagonas, and
Viktor Vafeiadis. Effective stateless model checking for C/C++ con-
currency. Proceedings of the ACM on Programming Languages,
2(POPL):17:1-17:32, December 2017.

Michalis Kokologiannakis, Azalea Raad, and Viktor Vafeiadis. Model
checking for weakly consistent libraries. In Proceedings of the 40th
ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2019, pages 96-110, 2019.

Christopher Lidbury and Alastair F. Donaldson. Dynamic race detec-
tion for C++11. In Proceedings of the 44th ACM SIGPLAN Symposium
on Principles of Programming Languages, POPL 2017, pages 443-457,
New York, NY, USA, 2017. ACM.

Christopher Lidbury and Alastair F. Donaldson. Sparse record and
replay with controlled scheduling. In Proceedings of the 40th ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation, PLDI 2019, pages 576-593, 2019.

Brian Norris and Brian Demsky. CDSChecker: Checking concurrent
data structures written with C/C++ atomics. In Proceedings of the 2013
Conference on Object-Oriented Programming, Systems, Languages,
and Applications, pages 131-150, October 2013.

Peizhao Ou and Brian Demsky. Towards understanding the costs of
avoiding out-of-thin-air results. Proceedings of the ACM on Program-
ming Languages Volume 2 Issue OOPSLA, 2(O0OPSLA):136:1-136:29,
October 2018.



	Motivation
	Limitations of the State of the Art
	Key Insights
	Main Artifacts
	Key Results and Contributions
	Why ASPLOS
	Summary

