A Compiler Infrastructure for Accelerator Generators
Extended Abstract

Rachit Nigam*

Samuel Thomas™

Zhijing Li Adrian Sampson

Cornell University

1. Motivation

Accelerating interest in specialized and reconfigurable archi-
tectures has amplified the need for compilers that automati-
cally generate hardware implementations from high-level de-
scriptions. The traditional approach is high-level synthesis
(HLS), which aims to automatically compile C and C++ pro-
grams to hardware. However, software languages are a poor
fit for generating hardware. HLS compilers need to bridge the
semantic chasm between sequential, von Neumann software
languages and the resource-constrained, pervasively parallel
hardware setting. The result is a complex, general-purpose pro-
gramming model that does not excel at expressing any specific
category of accelerator architecture.

A more promising approach is to raise the level of abstrac-
tion with domain-specific languages (DSLs) and generate a
more specialized class of architecture [4, 8]. While successful,
such compilers remain significant one-off engineering feats.
An accelerator compiler writer needs not only to decide on an
architectural style, such as streaming pipelines [4] or systolic
arrays [2]; they then must face the problem of realizing the ar-
chitecture as intertwined data and control paths using a register
transfer level (RTL) target language. These DSL-to-accelerator
compilers often invent several intermediate languages on the
way to hardware, and reimplement general-purpose optimiza-
tions irrelevant to their domain.

We present Calyx, a new intermediate language (IL) and
open-source infrastructure for building compilers that generate
hardware accelerators. The key novel idea in Calyx is to aug-
ment a structural hardware representation with a novel control
language that lets compiler frontends separate computation
resources from their execution schedule. Calyx offers two
main benefits over emitting RTL directly: (1) The program’s
control flow is not obfuscated by implementation in control
circuitry, so the Calyx compiler can perform optimizations
that are sensitive to the control flow. (2) Frontend compilers
can leave the tedious job of implementing the control circuitry,
such as finite state machines (FSMs), to the Calyx compiler.

This paper describes the design of the Calyx IL and a series
of passes that translate high-level programs to SystemVerilog
implementations. We use Calyx to implement two compilers
as case studies: one that generates systolic arrays for linear
algebra computations, and one that implements a recently pro-
posed imperative language for accelerator design. Calyx makes
it tractable to implement these compilers and obtain efficient
hardware without directly manipulating RTL descriptions.

*Equally contributing authors.

2. Limitations of the State of the Art

* RTL Intermediate Languages. FIRRTL [7] and other in-
termediate languages for hardware design [3, 12, 14, 15] let
tools generate, optimize, and transform RTL descriptions.
They are appropriate for representing complete hardware
implementations, but for DSL frontends, they inherit the
same abstraction gap problem as any other RTL language.
Calyx focuses on explicitly representing the control flow of
the accelerator design and enables control-flow-sensitive op-
timizations. Such optimizations are infeasible in RTL-level
languages since control flow is encoded using structural
elements and recovering it, in general, is not possible.

¢ FSM-Based Intermediate Languages. Intermediate lan-
guages that use finite state machines with some representa-
tion of the data path have been used extensively in traditional
HLS compilers [5, 11, 13]. While able to express any se-
quential circuit, such languages suffer from two problems:
(1) In an effort to represent cycle-accurate schedules, the
languages impose restrictions on the data path. (2) They
typically impose a particular implementation strategy for
execution schedules—for example, using one top-level FSM
instead of many small ones. Calyx does not restrict the data
path specification, and it does not tie the abstract execution
schedule to any concrete implementation. Frontends can con-
trol the implementation strategy based on domain-specific
information (cf Section 4.4 in the main paper).

* Hardware DSL Compilation. Research languages such as
Spatial [8], HeteroCL [9], Dahlia [10], and Aetherling [4]
aim to combat the expressivity problems of traditional HLS.
They are not designed as general-purpose compiler ILs,
however, and they typically implement specialized internal
ILs that reflect the semantics of the language. Calyx aims to
provide a common, unifying target IL for hardware-focused
DSLs that is language independent but empowers frontends
to exert fine-grained control over the generated architecture.

* High-Level Synthesis. Traditional HLS compilers extend
C, C++, or OpenCL with ad hoc annotations to express
hardware-level concerns [1, 6, 16, 17]. They are convenient
for kernels that fit their parallel loop-based mold, but they
make it difficult to express more specialized and domain-
specific architectures. For example, the Aetherling com-
piler [4] opts to generate RTL directly because C-based HLS
is a poor match for the kinds of high-throughput streaming
pipelines it targets. Calyx aims to let similar compiler de-
signs generate exactly the architecture they want without
resorting to low-level RTL engineering.



Data Path Execution
Specification Schedule
seq {
group init { group cond { init;

.in = 03 cmp.l = 10; while cmp.out with cond {
3} cmp.r = r.out; incr;
} }
group incr { 3}
al.l = 1;
al.r = r.out;
.in = al.out;

O D
1 0 10
Figure 1: Specifying designs using Calyx’s control language.

3. Key Insight

Calyx is an intermediate language (IL) that separates the spec-
ification of an accelerator’s data path from its execution sched-
ule. Hardware DSL compilers specify structural components
and define their execution schedule using an imperative con-
trol language that includes loops, conditionals, sequencing,
and parallel execution.

Figure 1 shows a Calyx program that implements a counter.
It uses groups (1) to specify three structural graphs: init,
which initializes the register with the value 0, incr, which
increments the value in the register, and cond, which computes
the exit condition for the counter. To determine when these
groups run, the Calyx program defines an execution schedule
(2) using the control language. The seq control statement
first executes the graph defined by init and then uses the
whi le statement to increment the value in the register until the
value on cmp.out is 0. An equivalent RTL implementation of
the same hardware would need to realize the control logic in
concrete components and wires; Calyx represents it abstractly.
Furthermore, groups can transparently read from and write to
ports without multiplexing; the Calyx compiler automatically
generates this additional logic based on the schedule.

Calyx’s split between the data path and the control specifica-
tion lets frontends precisely specify the structural components
in a hardware design without intertwining it with the con-
trol logic. This novel split allows optimization, analysis, and
compositional compilation of accelerator designs.

4. Main Artifacts

* A modular, pass-based compiler for Calyx that optimizes
and lowers Calyx programs to synthesizable SystemVerilog.

* As a first case study, a systolic array generator targeting
Calyx for linear algebra acceleration.

* As a second case study, a Calyx-based backend for
Dahlia [10], an imperative language that was originally im-
plemented using a commercial HLS tool as a backend.

5. Key Results and Contributions

Contributions

* We present the design of the Calyx IL and its novel approach
to separating a structural description from an imperative
control program that orchestrates its execution schedule.

* We describe how to efficiently compile Calyx programs with
high-level control constructs to synthesizable RTL.

* We show how to enrich Calyx programs with domain spe-
cific information, such as the latency of custom operations
generated by a compiler frontend, and demonstrate how the
Calyx compiler’s pass-based infrastructure can exploit this
information to improve the efficiency of generated hardware.

Empirical results

* Our Calyx-based systolic array generator’s implementations
for matrix multiply are 5.3x faster on average than the
designs generated by Vivado HLS and only 1.14x larger on
average. At the input largest size, Calyx is 11 x faster while
using only 1.76x more area.

e Our implementation of a new Calyx backend for the
Dahlia [10] programming language generates designs that
are within a small factor of a heavily optimized commercial
HLS toolchain.

* We extend our Calyx backend for Dahlia to generate domain-
specific latency information and show that a custom pass
implemented to use this information generates designs that
are 50% faster than the baseline compiler.

Advantages over past work

 Unlike previous work on RTL-level ILs [3, 7], Calyx lifts
the level of abstraction by providing a high-level control
language to specify the execution schedule of a program.
Specifying the schedule in this high-level language allows
the Calyx compiler to perform control-flow-sensitive opti-
mizations to hardware designs.

¢ Calyx differs from past work that proposes custom DSLs [4,
8] and uses internal ILs to optimize designs. Calyx is a
generic IL and does not make specific architectural choices
for the programs represented in it. Language frontends can
integrate low-level RTL-like datapaths when needed with
high-level imperative descriptions when convenient.

6. Why ASPLOS

Calyx is a programming language for generating custom archi-
tectures. It combines ideas from language design and compiler
construction with techniques from computer architecture to
generate high-performance domain-specific hardware.

7. Citation for Most Influential Paper Award

Calyx initiated a category of research on designing and imple-
menting accelerator design languages, which are now seen
as a distinct category from low-level hardware description
languages (HDLs) and old-fashioned C-derived high-level
synthesis (HLS) compilers. The paper highlighted the need
for investment in generalized, reusable infrastructure to imple-
ment specialized, narrowly focused accelerator compilers. The
open-source Calyx infrastructure has since become the foun-
dation for hundreds of domain-specific accelerator compilers,
and it served as a research enabler for work on optimizing,
analyzing, and debugging hardware accelerators.



References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

Andrew Canis, Jongsok Choi, Mark Aldham, Victor
Zhang, Ahmed Kammoona, Jason H Anderson, Stephen
Brown, and Tomasz Czajkowski. LegUp: high-level syn-
thesis for FPGA-based processor/accelerator systems. In

International Symposium on Field-Programmable Gate
Arrays (FPGA), 2011.

J. Cong and J. Wang. PolySA: Polyhedral-based systolic
array auto-compilation. In IEEE/ACM International Con-
ference on Computer-Aided Design (ICCAD), 2018.

Ross Daly, Lenny Truong, and Pat Hanrahan. Invoking
and linking generators from multiple hardware languages
using CorelR. In Workshop on Open-Source EDA Tech-
nology (WOSET), 2018.

David Durst, Matthew Feldman, Dillon Huff, David
Akeley, Ross Daly, Gilbert Louis Bernstein, Marco Pa-
trignani, Kayvon Fatahalian, and Pat Hanrahan. Type-
directed scheduling of streaming accelerators. In ACM
SIGPLAN Conference on Programming Language De-
sign and Implementation (PLDI), 2020.

Nikil D Dutt, Tedd Hadley, and Daniel D Gajski. An
intermediate representation for behavioral synthesis. In
Proceedings of the 27th ACM/IEEE Design Automation
Conference, 1991.

Intel. Intel High Level Synthesis Compiler. URL
https://www.altera.com/products/design-
software/high-level-design/intel-hls-

compiler/overview.html.

Adam M. Izraelevitz, Jack Koenig, Patrick Li, Richard
Lin, Angie Wang, Albert Magyar, Donggyu Kim, Colin
Schmidt, Chick Markley, Jim Lawson, and Jonathan
Bachrach. Reusability is FIRRTL ground: Hardware
construction languages, compiler frameworks, and trans-
formations. In International Conference on Computer-
Aided Design (ICCAD), 2017.

David Koeplinger, Matthew Feldman, Raghu Prabhakar,
Yaqi Zhang, Stefan Hadjis, Ruben Fiszel, Tian Zhao,
Luigi Nardi, Ardavan Pedram, Christos Kozyrakis, and
Kunle Olukotun. Spatial: a language and compiler for
application accelerators. In ACM SIGPLAN Conference
on Programming Language Design and Implementation
(PLDI), 2018.

Yi-Hsiang Lai, Yuze Chi, Yuwei Hu, Jie Wang, Cody Hao
Yu, Yuan Zhou, Jason Cong, and Zhiru Zhang. Hete-
roCL: A multi-paradigm programming infrastructure for
software-defined reconfigurable computing. In Interna-

tional Symposium on Field-Programmable Gate Arrays
(FPGA), 2019.

[10]

(11]

(12]

[13]

[14]

[15]

[16]

[17]

Rachit Nigam, Sachille Atapattu, Samuel Thomas, Zhi-
jing Li, Theodore Bauer, Yuwei Ye, Apurva Koti, Adrian
Sampson, and Zhiru Zhang. Predictable accelerator de-
sign with time-sensitive affine types. In ACM SIGPLAN
Conference on Programming Language Design and Im-
plementation (PLDI), 2020.

Sameer D Sahasrabuddhe, Hakim Raja, Kavi Arya, and
Madhav P Desai. Ahir: A hardware intermediate repre-
sentation for hardware generation from high-level pro-
grams. In 20th International Conference on VLSI Design
held jointly with 6th International Conference on Embed-
ded Systems (VLSID’07), 2007.

Fabian Schuiki, Andreas Kurth, Tobias Grosser, and Luca
Benini. LLHD: A multi-level intermediate representation
for hardware description languages. In ACM SIGPLAN
Conference on Programming Language Design and Im-
plementation (PLDI), 2020.

Rohit Sinha and Hiren D Patel. synASM: a high-level
synthesis framework with support for parallel and timed
constructs. IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems, 2012.

Sheng-Hong Wang, Akash Sridhar, and Jose Renau.
LNAST: a language neutral intermediate representation
for hardware description languages. In Second Workshop
on Open-Source EDA Technology (WOSET), 2019.

Clifford Wolf. Yosys manual. http://www.clifford.
at/yosys/files/yosys_manual.pdf.

Xilinx Inc. Vivado Design Suite User Guide:
High-Level Synthesis. UG902 (v2017.2) June
7, 2017. https://www.xilinx.com/support/

documentation/sw_manuals/xilinx2017_2/
ug902-vivado-high-level-synthesis.pdf.

Zhiru Zhang, Yiping Fan, Wei Jiang, Guoling Han,
Changgqi Yang, and Jason Cong. AutoPilot: A platform-
based ESL synthesis system. In High-Level Synthesis,
pages 99-112. 2008.


https://www.altera.com/products/design-software/high-level-design/intel-hls-compiler/overview.html
https://www.altera.com/products/design-software/high-level-design/intel-hls-compiler/overview.html
https://www.altera.com/products/design-software/high-level-design/intel-hls-compiler/overview.html
http://www.clifford.at/yosys/files/yosys_manual.pdf
http://www.clifford.at/yosys/files/yosys_manual.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_2/ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_2/ug902-vivado-high-level-synthesis.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_2/ug902-vivado-high-level-synthesis.pdf

	Motivation
	Limitations of the State of the Art
	Key Insight
	Main Artifacts
	Key Results and Contributions
	Why ASPLOS
	Citation for Most Influential Paper Award

