
Benchmarking, Analysis, and Optimization of Serverless Function Snapshots
Extended Abstract

Dmitrii Ustiugov†, Plamen Petrov†, Marios Kogias∗‡, Edouard Bugnion+, and Boris Grot†

†University of Edinburgh, ‡Microsoft Research, +EPFL

1. Motivation
In recent years, serverless computing has emerged as a rapidly-
growing cloud service and deployment model, increasing from
12% adoption in 2017 to 21% adoption in 2018 [6, 15]. In
serverless, services are decomposed into collections of inde-
pendent stateless functions that are invoked by events specified
by the developer. The number of active functions at any given
time is strictly determined by the load on that specific function,
and could range from zero to thousands of instances running
concurrently. This scaling happens automatically on-demand
and is handled by the cloud provider. Thus, the serverless
model combines extreme elasticity with pay-as-you-go billing
whereby customers are charged only for the time spent exe-
cuting their requests – a marked departure from conventional
virtual machines (VMs) hosted in the cloud that are billed for
their uptime regardless of usage.

To make the serverless model profitable, cloud vendors
colocate thousands of independent function instances on a
single physical server, thus achieving high server utilization.
The reason why such a high degree of colocation is possible
is that most functions are invoked relatively infrequently and
execute for a very short amount of time. Indeed, a study at
Microsoft Azure showed that 90% of the functions execute for
less than 10 seconds [18].

Because of their short execution time, booting a function
(i.e., cold start) is an overwhelmingly expensive operation
latency-wise, and can easily dominate the total execution time.
Moreover, customers are not billed for the time a function
boots, which de-incentivizes the cloud vendor from booting
each function from scratch on-demand. Similarly, customers
also have an incentive to avoid cold starts because of their
high impact on latency [17]. As a result, both cloud vendors
and their customers prefer to keep function instances memory-
resident (i.e., warm) [10, 16, 17]. However, keeping idle
function instances alive wastefully occupies precious main
memory, which accounts for 40% of a modern server’s typ-
ical capital cost [1]. With serverless providers instantiating
thousands of function on a single server [1, 2], the memory
footprint of keeping all instances warm can reach into hun-
dreds of GBs.

2. Limitations of the State of the Art
To avoid keeping thousands of functions warm while also
eliding the high latency of cold-booting a function, the industry

∗The work was done when the author was at EPFL.

has embraced snapshotting as a promising solution. With this
approach, once a function instance is fully booted, its full
architectural state is captured and stored on disk. When a
new invocation for that function arrives, the orchestrator can
rapidly load a new function instance from the corresponding
snapshot. Once loaded, the instance can immediately start
processing the incoming invocation, thus eliminating the high
latency of a cold boot.

Snapshots are attractive because they provide zero main
memory consumption during the periods of a function’s in-
activity and enable short cold-start delays. The snapshots of
function instances can be stored in local storage (e.g., SSD) or
in a remote storage (e.g., disaggregated storage service).

The state-of-the-art academic work on function snapshot-
ting, called Catalyzer [8], showed that snapshot-based restora-
tion in the context of gVisor [9] virtualization technology
can be performed in 10s-100s of milliseconds. To achieve
such a short start-up time, Catalyzer minimizes the amount
of processing on the critical path of loading a VM from a
snapshot. First, Catalyzer loads the minimum amount of state
necessary to resume VM execution. Then, it maps the plain
guest-physical memory file as a file-backed virtual memory
region. Crucially, the guest-physical memory of the VM is
not populated with memory contents, which still reside on
disk when the user code of the function starts running. As
a result, each access to a yet-untouched page raises a page
fault that must be served by the host OS. These page faults
occur serially on the critical path of function execution and
significantly increase the runtime of a function loaded from a
snapshot.

3. Key Insights

To understand serverless system operation, we introduce
vHive, an open-source framework for serverless experimen-
tation across the whole serverless stack.1 Using vHive, we
study cold-start latency of functions from the FunctionBench
suite [11, 12], as well as their memory footprint and spatio-
temporal locality characteristics. Functions run inside Fire-
cracker MicroVMs [1] as part of the industry-standard Con-
tainerd infrastructure [3, 7]. In our experiments, we evaluate a
state-of-the-art baseline where the function is restored from
a snapshot on a local SSD [4, 8]. We simulate cold function
invocations by flushing the page cache of the host OS before
each measurement.

1The code is available at https://github.com/ease-lab/vhive.

https://github.com/ease-lab/vhive


Based on our analysis, we make three key observations.
First, restoring from a snapshot yields a much smaller memory
footprint (8-99MB) for a given function than cold-booting the
function from scratch (148-256 MB) – a reduction of 61-96%.
The reason for the greatly reduced footprint when restoring
from a snapshot is that only the pages that are actually used
by the function are loaded into memory. In contrast, when
a function boots from scratch, both the guest OS and the
function’s user code engage functionality that is never used
during serving a function invocation (e.g., reading files and
loading libraries).

Our second observation is that the execution time of a func-
tion restored from a snapshot is dominated by serving of page
faults in the host OS as pages are lazily mapped into the guest
memory. The host OS serves these page faults one by one,
bringing the pages from the guest-memory backing file on
disk. We find that these file accesses impose a particularly
high overhead because the guest accesses lack spatial locality,
rendering host OS’ disk read-ahead prefetching ineffective.
Altogether, we find that servicing page faults on the critical
path of function execution slows down function processing
by 95%, on average, compared to executing a function from
memory (i.e., “warm”).

Our last observation is that a given function accesses largely
the same set of guest-physical memory pages across multiple
invocations of the function. For the studied functions, 97%, on
average, of the memory pages are the same across invocations,
even when the function is invoked with different inputs (e.g,
different images to be rotated).

4. Main Artifacts
To facilitate deeper understanding and experimentation with
serverless computing, this work introduces vHive, an open-
source framework for serverless experimentation, which
enables systems researchers to innovate across the deep
distributed serverless stack. vHive integrates open-source
production-grade components from the leading serverless
providers, namely Amazon Firecracker hypervisor [1], Con-
tainerd [7], Kubernetes [13], and Knative [5], and a toolchain
for functions deployment and analysis.

Our analysis, summarized in §3, shows that a function’s
working set of guest memory pages is compact and stable
across different invocations of the same function. Leveraging
these insights, we introduce Record-and-Prefetch (REAP) –
an orchestrator for serverless hosts that exploits recurrence
in the memory working set of functions to reduce cold start
latency. Upon the first invocation of a function, REAP records
a compact trace of guest-physical pages that comprise the
working set of a function, and stores the copies of these pages
in a small working set file. On each subsequent invocation,
REAP uses the recorded trace to proactively prefetch the entire
working set into main memory (by reading the contents of the
working set file with a single disk read) and eagerly installs it
into the guest’s memory space.

To implement REAP in vHive, we add minimal changes
to the Firecracker hypervisor to register the guest-physical
memory region for handling page faults in userspace, using
the stock Linux mechanism [14]. This allows the orchestrator
to handle a function instance’s page faults on behalf of the
host OS. Our implementation of the REAP orchestrator is
independent of the underlying serverless infrastructure and
requires no changes to the OS kernel.

Our evaluation demonstrates that REAP is able to elimi-
nate up to 97% of the pages faults, as compared to baseline
snapshots, by taking full advantage of SSD bandwidth and
by carefully avoiding software overheads in the kernel. As a
result, REAP slashes cold-start latency of serverless functions
by an average of 3.7×.

5. Key Results and Contributions

• We release vHive, an open-source framework for serverless
experimentation, comprising production-grade components
from the leading serverless providers to enable innovation in
serverless systems across their deep and distributed software
stack.

• We demonstrate that the state-of-the-art approach of starting
a function from a snapshot results in low memory utilization
but high start-up latency due to lazy page faults and poor
locality in SSD accesses. We further observe that the set of
pages accessed by a function across invocations recurs.

• We present the REAP orchestrator, which uses a record-and-
prefetch mechanism to eagerly install the set of pages used
by a function from a pre-recorded trace. REAP speeds up
function cold start time by 3.7×, on average, without intro-
ducing any memory overheads or memory sharing across
function instances.

6. Why ASPLOS

Our work enables cross-stack innovation in serverless systems
by releasing vHive, an open-source framework for serverless
experimentation, comprising the leading industrial compo-
nents. Using vHive, we show that the state-of-the-art approach
of restoring a serverless function from a snapshot involves
inefficiencies both in system software and in hardware (disk
bandwidth). We design REAP that achieves fast function start-
up times by fully utilizing SSD bandwidth and overcoming
software inefficiencies of baseline snapshotting.

7. Citation for Most Influential Paper Award

For unlocking innovation across deep and distributed server-
less stack with vHive, an open-source framework for server-
less experimentation, and showcasing the framework’s utility
with a detailed analysis of the state-of-the-art snapshot-based
serverless systems that led to a simple yet highly effective
snapshot load optimization.

2



References
[1] Alexandru Agache, Marc Brooker, Alexandra Iordache, Anthony

Liguori, Rolf Neugebauer, Phil Piwonka, and Diana-Maria Popa. Fire-
cracker: Lightweight virtualization for serverless applications. In
Proceedings of the 17th Symposium on Networked Systems Design and
Implementation (NSDI), 2020.

[2] Amazon. A demo running 4000 Firecracker MicroVMs.
Available at https://github.com/firecracker-microvm/
firecracker-demo.

[3] Amazon. Firecracker-containerd. Available at https://github.
com/firecracker-microvm/firecracker-containerd.

[4] Amazon. Firecracker snapshotting. Available at
https://github.com/firecracker-microvm/firecracker/
blob/master/docs/snapshotting/snapshot-support.md.

[5] The Knative Authors. Knative. Available at https://knative.dev.
[6] CBINSIGHTS. Why serverless computing is the fastest-growing

cloud services segment. Available at https://www.cbinsights.
com/research/serverless-cloud-computing.

[7] Containerd. An industry-standard container runtime with an empha-
sis on simplicity, robustness and portability. Available at https:
//containerd.io.

[8] Dong Du, Tianyi Yu, Yubin Xia, Binyu Zang, Guanglu Yan, Cheng-
gang Qin, Qixuan Wu, and Haibo Chen. Catalyzer: Sub-millisecond
startup for serverless computing with initialization-less booting. In Pro-
ceedings of the 25th International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS-XXV),
2020.

[9] Google. gVisor. Available at https://gvisor.dev.
[10] Google Cloud. Configuring warmup requests to improve perfor-

mance. Available at https://cloud.google.com/appengine/
docs/standard/python/configuring-warmup-requests.

[11] Jeongchul Kim and Kyungyong Lee. FunctionBench: A suite of
workloads for serverless cloud function service. In Proceedings of the
12th IEEE International Conference on Cloud Computing (CLOUD),
2019.

[12] Jeongchul Kim and Kyungyong Lee. Practical cloud workloads for
serverless FaaS. In Proceedings of the 2019 ACM Symposium on Cloud
Computing (SOCC), 2019.

[13] Kubernetes. Production-grade container orchestration. Available at
https://kubernetes.io.

[14] Linux programmer’s manual. Userfaultfd. Available at https://
man7.org/linux/man-pages/man2/userfaultfd.2.html.

[15] Market Reports World. Serverless Architecture Market by
End-Users and Geography - Global Forecast 2019-2023,
2019. Available at https://www.marketreportsworld.
com/serverless-architecture-market-13684687.

[16] Microsoft. Azure functions, 2019. Available at https://azure.
microsoft.com/en-gb/services/functions.

[17] Goncalo Neves. Keeping functions warm – how to fix AWS Lambda
cold start issues. Available at https://serverless.com/blog/
keep-your-lambdas-warm.

[18] Mohammad Shahrad, Rodrigo Fonseca, Iñigo Goiri, Gohar Chaudhry,
Paul Batum, Jason Cooke, Eduardo Laureano, Colby Tresness, Mark
Russinovich, and Ricardo Bianchini. Serverless in the Wild: Character-
izing and optimizing the serverless workload at a large cloud provider.
In Proceedings of the 2020 USENIX Annual Technical Conference
(ATC), 2020.

3

https://github.com/firecracker-microvm/firecracker-demo
https://github.com/firecracker-microvm/firecracker-demo
https://github.com/firecracker-microvm/firecracker-containerd
https://github.com/firecracker-microvm/firecracker-containerd
https://github.com/firecracker-microvm/firecracker/blob/master/docs/snapshotting/snapshot-support.md
https://github.com/firecracker-microvm/firecracker/blob/master/docs/snapshotting/snapshot-support.md
https://knative.dev
https://www.cbinsights.com/research/serverless-cloud-computing
https://www.cbinsights.com/research/serverless-cloud-computing
https://containerd.io
https://containerd.io
https://gvisor.dev
https://cloud.google.com/appengine/docs/standard/python/configuring-warmup-requests
https://cloud.google.com/appengine/docs/standard/python/configuring-warmup-requests
https://kubernetes.io
https://man7.org/linux/man-pages/man2/userfaultfd.2.html
https://man7.org/linux/man-pages/man2/userfaultfd.2.html
https://www.marketreportsworld.com/serverless-architecture-market-13684687
https://www.marketreportsworld.com/serverless-architecture-market-13684687
https://azure.microsoft.com/en-gb/services/functions
https://azure.microsoft.com/en-gb/services/functions
https://serverless.com/blog/keep-your-lambdas-warm
https://serverless.com/blog/keep-your-lambdas-warm

	Motivation
	Limitations of the State of the Art
	Key Insights
	Main Artifacts
	Key Results and Contributions
	Why ASPLOS
	Citation for Most Influential Paper Award

