
Jamais Vu: Thwarting Microarchitectural Replay Attacks
Extended Abstract

Dimitrios Skarlatos†, Zirui Neil Zhao†, Riccardo Paccagnella, Christopher Fletcher, Josep Torrellas
University of Illinois at Urbana-Champaign

{skarlat2, ziruiz6, rp8, cwfletch, torrella}@illinois.edu
†Authors contributed equally to this work.

1. Motivation
The microarchitecture of modern computer systems creates
many side channels that allow an attacker running on a differ-
ent process to exfiltrate execution information from a victim.
Indeed, hardware resources such as caches [16, 24, 15, 11,
22, 23], TLBs [10], branch predictors [7, 2, 8], load-store
units [12], execution ports [5, 3, 9], functional units [4, 3], and
DRAM [17] have been shown to leak information.

Luckily, a limitation of these microarchitecural side chan-
nels is that they are often very noisy. To extract information,
the execution of attacker and victim threads has to be carefully
orchestrated [23, 15, 16], and often does not work as planned.
Hence, an attacker needs to rely on many executions of the
victim code section to obtain valuable information. Further,
secrets in code sections that are executed only once or only a
few times are hard to exfiltrate.

Unfortunately, a recently-introduced type of attack called
Microarchitectural Replay Attack (MRA) [19] is able to elimi-
nate the measurement variation in (i.e., to denoise) most mi-
croarchitecural side channels. This is the case even if the vic-
tim code section is executed only once. Such capability makes
the plethora of existing side-channel attacks look formidable
and suggests the potential for a new wave of powerful side
channel attacks.

MRAs use the fact that, in out-of-order cores, pipeline
squashes due to events such as exceptions, branch mispre-
dictions, or memory consistency model violations can force
a dynamic instruction to re-execute. Hence, in an MRA, the
attacker actuates on one or multiple instructions to force the
squash and re-execution of a victim instruction V multiple
times. This capability enables the attacker to cleanly observe
the side-effects of V.

MRAs are powerful because they exploit a central mech-
anism in modern processors: out-of-order execution with in-
order retirement. Moreover, MRAs are not limited to specula-
tive execution attacks: the instruction V that is replayed can be
a correct instruction that will eventually retire. Finally, MRAs
come in many forms. While the first MRA [19] exposed the
side effects of V by repeatedly causing a page fault on an older
instruction, the same result can be attained with other events
that trigger pipeline flushes. In the Optional Appendix, we
have uploaded a Proof-of-Concept of a memory consistency
model violation MRA that we have developed.

To thwart MRAs, one has to eliminate instruction replay or

at least bound the number of replays that a victim instruction
V may suffer. The goal is to deny the attacker the opportunity
to see many re-executions of V.

2. Limitations of the State of the Art
As MRAs were introduced last year, there is currently no
defense against MRAs.

There are several mechanisms in the literature that, al-
though not designed as defenses against MRAs, can miti-
gate specific instances of MRAs. For example, page fault
protection schemes [18, 14, 13, 6] can be used to mitigate
MRAs that rely on page faults to cause pipeline squashes.
The goal of these countermeasures is to block controlled-
channel attacks [21, 20] by terminating victim execution when
an OS-induced page fault is detected. The most recent of
these defenses, Autarky [14], achieves this through a hard-
ware/software co-design that delegates paging decisions to the
enclave. However, MRA attacks that rely on events other than
page faults to trigger pipeline squashes (e.g., memory consis-
tency model violations, other exceptions, branch mispredic-
tions, and interrupts) would overcome these point mitigation
strategies.

There is no defense that addresses the root cause of MRAs,
namely that instructions can be forced to re-execute to denoise
a side channel.

3. Key Insights
This paper presents Jamais Vu, the first mechanism designed
to thwart MRAs.

The simple idea of Jamais Vu is to first record the victim
instructions V that are squashed. Then, as each V instruction
is re-inserted into the Reorder Buffer (ROB), Jamais Vu auto-
matically places a fence before it to prevent the attacker from
squashing it again. In reality, pipeline refill after a squash may
not bring in the same instructions that were squashed, or not
in the same order. Consequently, Jamais Vu has to provide a
more elaborate design.

To understand the variety of MRAs, this paper first analyzes
some of the characteristics of MRAs. These characteristics
and why they matter are explained in Table 1 in the paper.

Then, the paper considers how to design the defense. A
highly secure defense against MRAs would keep a fine-
grain record of all the Victim dynamic instructions that were
squashed. When one of these instructions would later attempt



to execute, the hardware would fence it and, on reaching re-
tirement, remove it from the record. In reality, such a scheme
is not practical due to storage requirements and the difficulty
of identifying the same dynamic instruction.

Hence, Jamais Vu proposes three classes of schemes that
discard this state early: Clear-on-Retire, Epoch, and Counter.
The schemes differ on when and how they discard the state.
They effectively provide different trade-offs between execu-
tion overhead, security, and implementation complexity.

The Clear-on-Retire scheme discards any Victim informa-
tion as soon as the program makes forward progress — i.e.,
when the instruction that caused the squash retires. The Epoch
scheme discards the state when the current “execution locality”
or epoch terminates, and execution moves to another locality.
We developed an analysis pass to mark epochs in an x86 exe-
cutable. Finally, the Counter scheme keeps the state forever,
but it compresses it into a single counter per static instruc-
tion. The counter keeps the difference between the number
of squashes and the number of retirements of any dynamic
instance of that static instruction. Counter strives to keep such
counter low (but can never be less than 0). Each of these
policies to discard or compress state creates a different attack
surface.

Table 2 describes the salient points of each of the schemes
and their pros/cons. Moreover, Table 3 assesses the relative
security of the schemes by comparing their worst-case squash
count for some representative code snippets.

The paper then describes an implementation of each of these
schemes and some design variations. The Clear-on-Retire and
Epoch schemes can be easily implemented with a Bloom filter
and with counting Bloom filters, respectively (Figures 3 and
4). The Counter scheme is implemented by storing the per-
instruction counters in memory and caching the counters in a
special Counter Cache (Figure 6).

The paper describes a program analysis pass that we de-
veloped. The pass places "start-of-epoch" markers in an ex-
ecutable, for use in the Epoch scheme. The pass accepts as
input a program in source code or binary.

4. Main Artifacts
The three key artifacts in the paper are three hardware de-
signs of our Jamais Vu approach to thwart MRAs, and their
hardware implementations. The designs are Clear-on-Retire,
Epoch, and Counter, and are outlined in Table 2. They provide
three different tradeoffs in execution overhead, security, and
implementation complexity.

A fourth artifact is the program analysis pass for use in
the Epoch scheme. The pass places "start-of-epoch" markers
in loops and loop iterations in an x86 executable. The pass
accepts as input a program in source code or binary. We did
not stress it much because it does not include new ideas.

Our hardware designs are implemented in and evaluated
with a cycle-level simulator (Gem5). They are evaluated on the
SPEC17 benchmark suite, using the Simpoint methodology to

select up to 10 representative intervals to estimate the end-to-
end application performance.

The hardware designs are also evaluated on a simple MRA
attack presented in [19]. To perform the analysis pass, we use
the binary analysis tool Radare2 [1].

5. Key Results and Contributions
The key result is that variations of the three proposed designs
of Jamais Vu (i) add modest execution time overhead, (ii)
can effectively mitigate MRAs, and (iii) only need simple
hardware implementations.

Specifically, among all the schemes, Clear-on-Retire has
the lowest execution time overhead. It incurs only a geometric
mean overhead of 6.0% over a processor with no MRA protec-
tion (Figure 7). It is also the simplest but least secure design
(Table 3). Epoch with loop iteration epochs has the next lowest
average execution overhead, namely 13.5%. This design is
also very simple and is more secure. The next design, Epoch
with whole-loop epochs, has higher average execution time
overhead, namely 22.6%. However, it has simple hardware
and is one of the two most secure designs (Table 3). Finally,
Counter has the highest average execution overhead, namely
31.0%. It is one of the two most secure schemes, but the im-
plementation proposed is not as simple as the other schemes.
Other results are sensitivity analyses of the different designs.

The contributions of this paper are as follows:
• Jamais Vu, the first defense mechanism to thwart MRAs. It
performs selective fencing of instructions to prevent replays.
• Several designs and implementations of Jamais Vu that pro-
vide different tradeoffs between execution overhead, security,
and design complexity.
• An evaluation of these designs using simulations. Our pre-
ferred design, based on Epoch with whole-loop epochs, can
effectively mitigate MRAs, has an average execution time over-
head of 22.6% in benign executions, and only needs simple
hardware counting Bloom filters associated with the ROB.

References
[1] UNIX-like reverse engineering framework and command-line toolset.

https://github.com/radareorg/radare2.
[2] Onur Aciiçmez, Çetin Kaya Koç, and Jean-Pierre Seifert. On the power

of simple branch prediction analysis. In Proc. of the ACM Conference
on Computer and Communications Security (CCS), 2007.

[3] Alejandro Cabrera Aldaya, Billy Bob Brumley, Sohaib ul Hassan,
Cesar Pereida García, and Nicola Tuveri. Port contention for fun and
profit. In Proc. of the IEEE Symposium on Security and Privacy (S&P),
2019.

[4] Marc Andrysco, David Kohlbrenner, Keaton Mowery, Ranjit Jhala,
Sorin Lerner, and Hovav Shacham. On subnormal floating point and
abnormal timing. In Proc. of the IEEE Symposium on Security and
Privacy (S&P), May 2015.

[5] Atri Bhattacharyya, Alexandra Sandulescu, Matthias Neugschwandt-
ner, Alessandro Sorniotti, Babak Falsafi, Mathias Payer, and Anil
Kurmus. SMoTherSpectre: Exploiting speculative execution through
port contention. In Proc. of the ACM Conference on Computer and
Communications Security (CCS), 2019.

[6] Sanchuan Chen, Xiaokuan Zhang, Michael K Reiter, and Yinqian
Zhang. Detecting privileged side-channel attacks in shielded execution
with Déjá Vu. In Proc. of the ACM Asia Conference on Computer and
Communications Security (ASIACCS), 2017.

2

https://github.com/radareorg/radare2


[7] Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu-Ghazaleh. Jump
over ASLR: Attacking branch predictors to bypass ASLR. In Proc.
of the IEEE/ACM International Symposium on Microarchitecture (MI-
CRO), 2016.

[8] Dmitry Evtyushkin, Ryan Riley, Nael Abu-Ghazaleh, and Dmitry
Ponomarev. Branchscope: A new side-channel attack on directional
branch predictor. In Proc. of the ACM International Conference on
Architectural Support for Programming Languages and Operating
Systems (ASPLOS), 2018.

[9] Ben Gras, Cristiano Giuffrida, Michael Kurth, Herbert Bos, and Kaveh
Razavi. ABSynthe: Automatic blackbox side-channel synthesis on
commodity microarchitectures. In Proc. of the Symposium on Network
and Distributed System Security (NDSS), 2020.

[10] Ben Gras, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. Trans-
lation leak-aside buffer: Defeating cache side-channel protections with
TLB attacks. In Proc. of the USENIX Security Symposium (USENIX),
2018.

[11] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B Lee.
Last-level cache side-channel attacks are practical. In Proc. of the
IEEE Symposium on Security and Privacy (S&P), 2015.

[12] Ahmad Moghimi, Jan Wichelmann, Thomas Eisenbarth, and Berk
Sunar. Memjam: A false dependency attack against constant-time
crypto implementations. International Journal of Parallel Program-
ming, 47(4):538–570, 2019.

[13] Oleksii Oleksenko, Bohdan Trach, Robert Krahn, Mark Silberstein, and
Christof Fetzer. Varys: Protecting SGX enclaves from practical side-
channel attacks. In Proc. of the USENIX Annual Technical Conference
(ATC), 2018.

[14] Meni Orenbach, Andrew Baumann, and Mark Silberstein. Autarky:
closing controlled channels with self-paging enclaves. In Proc. of the
European Conference on Computer Systems (EuroSys), 2020.

[15] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks and
countermeasures: the case of AES. In Proc. of the Cryptographers’
Track at the RSA Conference (CT-RSA), 2006.

[16] Colin Percival. Cache missing for fun and profit. In Proc. of the
Technical BSD Conference (BSDCan), 2005.

[17] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz, and
Stefan Mangard. DRAMA: Exploiting DRAM addressing for cross-
CPU attacks. In Proc. of the USENIX Security Symposium (USENIX),
2016.

[18] Ming-Wei Shih, Sangho Lee, Taesoo Kim, and Marcus Peinado. T-sgx:
Eradicating controlled-channel attacks against enclave programs. In
Proc. of the Symposium on Network and Distributed System Security
(NDSS), 2017.

[19] Dimitrios Skarlatos, Mengjia Yan, Bhargava Gopireddy, Read Sprabery,
Josep Torrellas, and Christopher Fletcher. MicroScope: Enabling Mi-
croarchitectural Replay Attacks. In Proc. of the ACM/IEEE Interna-
tional Symposium on Computer Architecture (ISCA), 2019.

[20] Wenhao Wang, Guoxing Chen, Xiaorui Pan, Yinqian Zhang, XiaoFeng
Wang, Vincent Bindschaedler, Haixu Tang, and Carl A. Gunter. Leaky
cauldron on the dark land: Understanding memory side-channel haz-
ards in sgx. In Proc. of the ACM Conference on Computer and Com-
munications Security (CCS), 2017.

[21] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. Controlled-channel
attacks: Deterministic side channels for untrusted operating systems.
In Proc. of the IEEE Symposium on Security and Privacy (S&P), 2015.

[22] Mengjia Yan, Read Sprabery, Bhargava Gopireddy, Christopher
Fletcher, Roy Campbell, and Josep Torrellas. Attack directories, not
caches: Side channel attacks in a non-inclusive world. In Proc. of the
IEEE Symposium on Security and Privacy (S&P), 2019.

[23] Yuval Yarom and Katrina Falkner. FLUSH+RELOAD: A high resolu-
tion, low noise, L3 cache side-channel attack. In Proc. of the USENIX
Security Symposium (USENIX), 2014.

[24] Yuval Yarom, Daniel Genkin, and Nadia Heninger. CacheBleed: A tim-
ing attack on OpenSSL constant time RSA. Journal of Cryptographic
Engineering, 7(2), 2017.

3


	Motivation
	Limitations of the State of the Art
	Key Insights
	Main Artifacts
	Key Results and Contributions

