MERCI: Efficient Embedding Reduction on Commodity Hardware via
Sub-Query Memoization

Yejin Lee, Seong Hoon Seo, Hyunji Choi, Hyoung Uk Sul, Soosung Kim, Jae W. Lee, Tae Jun Ham

Seoul National University

{yejinlee, andyseo247, hyunjichoi,

1. Motivation

Recommender systems exploit both dense features and cat-
egorical (sparse) features to provide personalized content to
individual users. Here, to represent a categorical feature, a rep-
resentation named embedding is often utilized. Here, embed-
ding is a relatively low-dimensional, dense vector representing
the semantics of a categorical data. For example, in an online
shopping website, each product on sale can be treated as a
feature and be represented with a distinct embedding vector.
In practice, it is common to represent a set of embedding
vectors as a single, pooled embedding vector. For instance, rec-
ommender systems often represent a user’s recently browsed
products using this single embedding vector. To obtain this
vector, recommender systems gather embedding vectors for
all of the user’s recently browsed products and then perform a
reduction operation (e.g., sum, average, max, inner product).
This operation is called embedding reduction. Embedding
reduction is a widely employed procedure in machine learning
(ML) models, and all popular NN frameworks such as Tensor-
flow [3], PyTorch [8], and Caffe2 [2] support this operation.
Embedding reduction operation is known to be memory-
bound. This operation only requires a very simple computation
(e.g., sum reduction) for each embedding vector that it fetches,
and thus its runtime often becomes bounded by the system’s
memory bandwidth rather than the system’s computation ca-
pability. Recent proposals [1,4,5, 6] attempt to optimize this
operation, but they require hardware modifications which pre-
vents them from being deployed on commodity hardware.
Therefore, this paper introduces a software-only solution
for accelerating embedding reduction through memoization.
Memoization [7] is a classic technique that stores the com-
putation results for specific inputs in advance and then reuse
them when the same input arrives again. Specifically, when
applied for the embedding reduction, it can potentially reduce
the number of memory accesses as well as computation time at
the expense of additional capacity cost. This seemingly simple
technique comes with several challenges. Memoization table
must be able to provide a broad coverage while being compact
enough to fit in memory. Also, it is critical not to incur any
extra memory accesses to retrieve the memoized values.
Thus, we propose MERCI, memoization for embedding
reduction with clustering, a novel memoization framework
for efficient embedding reduction on the commodity hardware.
At the heart of MERCI is Correlation-Aware Variable-Length
Clustering, which effectively identifies variable-length clus-

stuartsul,

soosungkim, jaewlee, taejunham}@snu.ac.kr

Cell Phones Electronics Office Products

0

Figure 1: Correlation heat map for product pairs of top 150
items in the Amazon Review dataset.

ters of frequently co-appearing features—which we indeed
observed in real-world datasets—for fine-grained (sub-query)
memoization. Furthermore, we introduce feature remapping
and memoization table construction that enables the processor
to efficiently retrieve memoized values.

2. Key Insights

Opportunities for sub-query memoization. We identify
new opportunities for fine-grained (i.e., sub-query granularity)
partial reduction memoization by exploiting the correlation
structure in real-world categorical features. For instance, Fig-
ure | depicts the pair-wise co-appearing frequency of the top
150 items in the Amazon Review dataset; a darker dot means
that the pair tends to co-appear more frequently as features of
an embedding reduction operation. The figure only shows the
pair-wise co-appearance, but there exist many variable-sized
set of features that tends to co-appear in a single embedding
reduction operation. Our work exploits such patterns and mem-
oizes the partial reduction results for the features that tend to
co-appear more frequently. By doing so, MERCI replaces mul-
tiple memory accesses and some reduction computations with
single memory access. Such partial reduction is possible as a
reduction operator (e.g., sum) is commutative and associative.

No one-size-fits-all in clustering. To identify the aforemen-
tioned clusters of frequently co-appearing features, we need to
cluster features based on their co-appearance patterns. Indeed,
there already exist algorithms such as hypergraph partitioning
algorithms whose goal is to generate a specified number of
equal-sized partitions such that features in the same partition
are likely to appear together. However, such algorithms cannot
generate variable-sized partitions, which is essential to model
real data inputs exhibiting variable-sized partition structures.
Furthermore, they do not allow users to limit the memory ca-
pacity cost of memoization in a fine-grained manner. Thus,
we propose Correlation-Aware Variable-Length Clustering,
which can reflect diversity in the size of correlated features by



1. Offline clustering 2. Online Query Processing

oo - lquery(2 3 4) (6.7
@ Jrartitioning e,+e,
luster B
eytezte - ¢
o‘(ﬁorrelqtion—aware L Reduction
clustering egte; |- result
L‘—][—‘j%] . Feature Cluster C]
Memoization | _Superggg Memory __
© Memoize table pamtlon. access

Figure 2: Overview of MERCI

evaluating benefit and cost, and generating clusters of size one
to twenty or more. It also sets memory limits at a granularity
of less than 1% of the original embedding table size.
Efficient online query processing. One challenge in memo-
ization is the fast retrieval of the memoized values. Specifi-
cally, if a memoization table lookup requires more memory
accesses than accessing all the embeddings that a particular
memoized value covers, memoization will not be beneficial.
To avoid such additional memory accesses, we remap feature
IDs, enabling quick identification of the cluster for each fea-
ture. We also carefully construct a memoization table so that
identifying the location of the memoized value is possible with
the minimal number of additional memory accesses. Finally,
we devise an efficient memoized value retrieval mechanism
based on those two strategies.

3. Main Artifacts

MERCI consists of two phases: offline clustering (details in
Section 4 of the full paper) and online query processing (de-
tails in Section 5). Figure 2 shows an overview of MERCI.
Offline clustering. @ MERCI first partitions N features into
a set of coarse-grained, fixed-length partitions called super-
partitions by utilizing an existing hypergraph partitioning al-
gorithm on the training dataset. Each super-partition contains
features that are likely to appear together based on the his-
tory of queries. Then, @ MERCI applies Correlation-Aware
Variable-Length Clustering to each super-partition, dividing
features in a super-partition into fine-grained, variable-length
clusters. € MERCI creates a memoization table holding all
possible partial sum combinations within each cluster.
Online query processing. MERCI utilizes the memoiza-
tion table created from the previous phase to serve incoming
queries. Once a query arrives (e.g., {2,3,4,6,7}) MERCI first
identifies which features belong to the same cluster. In this
example, features {2,3,4} belong to cluster A and {6,7} to
cluster B. Hence, two memoized partial sums (embeddings)
are retrieved (i.e., ez + €3 + ¢4 and eg + ¢7) and summed up
to generate the final output. In this scenario, the original
embedding reduction operation requires loading five embed-
dings (i.e., €3, €3, e4, eg, €7). On the other hand, MERCI only
needs to load two. Since the embedding reduction operation
is often memory bandwidth-bound, such reduction in memory
accesses directly translates to performance improvements.

4. Key Results

Throughput. MERCI achieves significant throughput im-
provement over baseline with no memoization. Specifically,
across all datasets, MERCI manifests throughput improvement
in the range of 47-219%, and achieved an average speedup of
67% and 93% at the expense of 1x and 8 x capacity overhead,
respectively. Figure 11 of the full paper shows the throughput
improvement with MERCIL.

Energy Saving. The improvements in throughput resulting
from the reduced number of memory accesses lead to the
energy consumption reduction. Evaluation shows that MERCI
reduces the energy consumption (i.e., CPU package + DRAM)
by 25-35%. Figure 13 of the full paper shows the energy
savings with MERCI.

5. Improvements over State-of-the-Arts

MERCI is the first attempt to apply memoization for opti-
mizing embedding reduction; thus, there is no direct state-of-
the-art work to compare. Still, there are works that aim to
accelerate embedding reduction with various approaches.
Hardware solutions for embedding reduction. For exam-
ple, RecNMP [5] and TensorDIMM [6] adopt the near-memory
processing (NMP) paradigm to exploit the abundant internal
bandwidth to perform reduction and only passes the reduc-
tion outcome to the external device through links with lower
bandwidth. Centaur [4] is a chiplet-based hybrid accelerator
that also includes embedding reduction as its target. However,
solutions that require hardware support are often expensive.
In contrast, MERCI is immediately deployable to provide a
substantial speedup on the commodity hardware at the cost of
extra memory capacity.

Feature-aware optimizations. Bandana [1] utilizes hyper-
graph partitioning algorithms to place embedding vectors that
are likely to be accessed together in the same 4KB NVM
block. Doing so enables Bandana to efficiently utilize its lim-
ited DRAM cache capacity. However, it still incurs the same
number of DRAM memory accesses to perform an embedding
reduction operation.

6. Why ASPLOS?

Our work aligns well with the spirit of ASPLOS, which highly
encourages interdisciplinary research that solves emerging
real-world problems. MERCT identifies opportunities for sub-
query memoization from application-level usage patterns (i.e.,
co-appearing features in real-world datasets), but the solution
involves low-level code optimization to make memoization
performant. In particular, MERCI i) tackles the embedding
reduction, which has become a major primitive in data cen-
ter workloads, ii) presents a memoization framework with
a clustering scheme that considers both dataset correlation
and memory constraints, iii) achieves substantial throughput
improvement and energy savings.



References

(1]

(2]
(3]

(4]

[5

—_

(6]

[7

—

(8]

Assaf Eisenman, Maxim Naumov, Darryl Gardner, Misha Smelyanskiy,
Sergey Pupyrev, Kim M. Hazelwood, Asaf Cidon, and Sachin Katti.
Bandana: Using non-volatile memory for storing deep learning models.
In Proceedings of Machine Learning and Systems (MLSys), 2019.
Facebook. Caffe2. https://caffe2.ai, 2016.

Google. TensorFlow: Large-scale machine learning on heterogeneous
systems. http://tensorflow.org/, 2015.

Ranggi Hwang, Taehun Kim, Youngeun Kwon, and Minsoo Rhu. Cen-
taur: A chiplet-based, hybrid sparse-dense accelerator for personalized
recommendations. In Proceedings of the ACM/IEEE 47th Annual Inter-
national Symposium on Computer Architecture (ISCA), 2020.

Liu Ke, Udit Gupta, Benjamin Youngjae Cho, David Brooks, Vikas
Chandra, Utku Diril, Amin Firoozshahian, Kim M. Hazelwood, Bill
Jia, Hsien-Hsin S. Lee, Meng Li, Bert Maher, Dheevatsa Mudigere,
Maxim Naumov, Martin Schatz, Mikhail Smelyanskiy, Xiaodong Wang,
Brandon Reagen, Carole-Jean Wu, Mark Hempstead, and Xuan Zhang.
RecNMP: Accelerating personalized recommendation with near-memory
processing. In Proceedings of ACM/IEEE Annual International Sympo-
sium on Computer Architecture, (ISCA), 2020.

Youngeun Kwon, Yunjae Lee, and Minsoo Rhu. TensorDIMM: A prac-
tical near-memory processing architecture for embeddings and tensor
operations in deep learning. In Proceedings of IEEE/ACM International
Symposium on Microarchitecture (MICRO), 2019.

Donald Michie. "Memo" functions and machine learning. Nature,
218(5136):19-22, 1968.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-
bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,
Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary
DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An im-
perative style, high-performance deep learning library. In Advances in
Neural Information Processing Systems (NeurIPS). 2019.


https://caffe2.ai
http://tensorflow.org/

	Motivation
	Key Insights
	Main Artifacts
	Key Results
	Improvements over State-of-the-Arts
	Why ASPLOS?

