
VEGEN: A Vectorizer Generator for SIMD and Beyond
Yishen Chen, Charith Mendis, Michael Carbin, and Saman Amarasinghe

Massachusetts Institute of Technology

1. Motivation

Vector instructions are ubiquitous in modern commodity mi-
croprocessors. Every few years, processor vendors introduce
new instruction sets that either increase the data width of these
instructions or introduce instructions with complex computa-
tion patterns. Initially, most of these instructions were single
instruction multiple data (SIMD), but vendors have introduced
more non-SIMD vector instructions to accelerate computation
patterns occurring in performance-critical domains such as dig-
ital signal processing, image processing, and machine learning
(e.g., Intel’s VNNI extension). For example, the addsubpd

instruction from the Intel SSE3 instruction set performs ad-
ditions and subtractions in alternative vector lanes. This is
an example of Single Instruction Multiple Operation Multiple
Data (SIMOMD) instructions [1]. In addition to SIMOMD
instructions, modern vector extensions also support non-SIMD
vector instructions with complex operations that gather values
from multiple lanes. Intel’s VNNI instruction, vpdpbusd, for
instance, multiplies signed and unsigned bytes, reduces every
four elements, and accumulates the results into 32-bit vector
lanes.

Supporting non-SIMD vector instructions requires signifi-
cantly more effort than SIMD ones. For instance, the initial
support LLVM commit that landed support for the addsub in-
struction family required three coordinated changes to LLVM:
refactoring LLVM’s SLP vectorizer to support alternating op-
codes, changing the target-specific cost model to recognize a
special case use of vector blending, and modifying the back-
end lowering logic to detect the pattern the special patterns
generated by the SLP vectorizer.

2. Limitations of the State of the Art

Existing vectorizers cannot directly emit non-SIMD instruc-
tions because non-SIMD instructions violate a basic invariant
assumed by vectorizers: Vector instructions perform simple,
isomorphic, and vertical (element-wise) operations. Existing
vectorization algorithms do not recognize the type of paral-
lelism supported by non-SIMD instructions and, in the case
that they do vectorize, emits excessive overhead shuffle in-
structions instead of directly exploiting more non-SIMD in-
structions. The existing methodology to targeting non-SIMD
vector instructions thus relies primarily on writing backend in-
struction selection (peephole) rules to combine simpler vector
instructions into more efficient non-SIMD ones.

There are two limitations to this methodology. First, it is
burdensome and error-prone. Second, it prevents vectorizers

from systematically consider non-SIMD instructions in their
search space. The peephole rules targeting non-SIMD instruc-
tions assume that the input program is already in vector form
and are therefore ineffective if the vectorizer does not emit
vector instructions in the first place.

As a corollary to the second point, previous research on auto-
matically generating instruction selection/peephole rules [2, 4]
is insufficient. However robust and powerful these local op-
timizations might be, they alone do not extract implicit, fine-
grained parallelism from a scalar program.

3. Key Insights & Overview
To support these instructions, we first broaden the type of
parallelism supported by vectorizers. We term this Lane Level
Parallelism (LLP). In contrast to superword-level parallelism
(SLP), in which groups of isomorphic operations executing
independently on individual vector lanes, LLP relaxes the
constraints on the parallel operations in two aspects. (1) The
operations need not be isomorphic. (2) The operations on each
lane can use the values of arbitrary input lanes.

The key to VEGEN’s vectorizer, which exploits LLP, comes
from the observation that a vectorizer only requires two pieces
of information to extract LLP:
• Which stream of scalar IR instructions can a given vector

lane execute?
• Once multiple streams are packed together, which values

are required as vector operands?
VEGEN uses a vector instruction description language to
model the instruction semantics and generates vectorizer com-
ponents that can answer these two types of queries. To target a
new vector instruction set, VEGEN only requires the compiler
writers to describe the semantics of each instruction in VE-
GEN’s instruction description language. For the first type of
query, VEGEN generates pattern matching code to recognize
scalar operations performed on each vector lane. For the sec-
ond type of query, VEGEN generates summaries of how the
live-ins of such matched operations are bound to input vector
lanes.

Within our framework, a target-independent vectorization
heuristic uses the generated target-specific pattern matching
code to recognize and pack operations supported by the given
vector instructions and uses the lane-binding summary to sort
out which vector values are required by the selected vector
instructions. We discuss two LLP vectorization heuristic: (1)
a compile-time efficient bottom-up dynamic programming
algorithm and (2) a more aggressive heuristic based on beam
search.

vmovdqu64 zmm0, [rdx]
vpbroadcastd zmm1, [rdi]
vpdpbusd zmm0, zmm0, [rsi]
vmovdqu64 [rdx], zmm0

vmovdqa xmm0, [rip]
vmovdqu xmm1, [rsi]
…………
…………
vpmovsxbw xmm7, xmm6
vpbroadcastw xmm5, xmm5
vpmullw xmm7, xmm7, xmm9
vpsrldq xmm2, xmm6, 8
…………
…………
vpaddd xmm1, xmm1, xmm8
vpaddd xmm1, xmm1, xmm7
vpaddd xmm1, xmm1, xmm6
vmovdqu [rdx], xmm1

movzx r11d, [rdi]
movsx eax, [rsi]
imul r11d, eax
…………
…………
add r11d, r10d
add r11d, ecx
mov [rdx], r11d
……………
……………

vmovdqu xmm6, [rsi + 32]
vmovdqu xmm7, [rsi + 48]
vmovdqa xmm2, [rip + .LCPI0_0]
vpshufb xmm3, xmm7, xmm2
vpshufb xmm2, xmm6, xmm2
vpunpckldq xmm2, xmm2, xmm3
…………
…………
vpmulld zmm1, zmm11, zmm1
vpaddd zmm1, zmm1, [rdx]
vpmovsxbd zmm3, xmm3
vpmulld zmm3, zmm10, zmm3
…………
…………
vpaddd zmm0, zmm2, zmm0
vpaddd zmm0, zmm1, zmm0
…………
…………

Lines of generated assembly
Relative Speedup
(Normalized to ICC)

(e) Vegen(c) GCC (d) LLVM(b) ICC

Instruction flavors used

106

SSE variants

4

1.00x

AVX512-VNNI

61

2.21x

SSE variants, AVX512

273

11.05x

Not vectorized

1.50x

 void dot_16x1x16_uint8_int8_int32(
 uint8_t data[restrict 4],
 int8_t kernel[restrict 16][4],
 int32_t output[restrict 16]) {
 for (int i = 0; i < 16; i++) {
 int32_t acc = output[i];
 for (int k = 0; k < 4; k++) {
 acc += data[k] * kernel[i][k];
 }
 output[i] = acc;}
 }

(a) C-like pseudo-code

Figure 1: Dot kernel in TVM’s 2D convolution computation (a) in C-like pseudo-code. Compiler generated assembly and statistics
for (b) Intel’s compiler ICC (c) GCC (d) LLVM and (e) the Vegan generated vectorizer

4. Main Artifacts

VEGEN takes Intel’s Intrinsic Guide1 as input and generates
the target-specific components of its vectorizer. The full vec-
torizer is an LLVM pass that automatically use the instructions
documented by the Intrinsic Guide.

5. Key Results and Contributions
On several performance-critical kernels, we show that VEGEN
can automatically use non-SIMD instructions in non-trivial
ways and, in some cases, rediscover the low-level algorithms
used by expert programmers.

Figure 1 shows an example of the vector code emitted by
VEGEN. The source program is a kernel used by TVM’s [3]
2D convolutional layers.2 Figure 1(a) shows the reference
C code of their kernel. Figures 1(b)-(e) show the assembly
output of ICC 19.0.1, GCC 10.2, LLVM 10.0, and the VEGEN
generated vectorizer, respectively. All code generators were
configured to target the AVX512-VNNI extension. VEGEN
does not use any hand-coded instruction information in its
implementation.

We make the following contributions in this paper:
• We introduce Lane Level Parallelism, which captures the

type of parallelism implemented by both SIMD and non-
SIMD vector instructions.

• We present a vectorizer generator that systematically use
complex non-SIMD instructions, using only their docu-
mented semantics as input.

• We describe a code-generation framework that jointly per-
forms vectorization and vector instruction selection while
maintaining the modularity of traditional target-independent
vectorizers designed for SIMD instructions.

1https://software.intel.com/sites/landingpage/

IntrinsicsGuide/
2We transcribed this reference implementation from the kernel’s source

comment, which contains the pseudocode.

• We show that on several performance-critical image and
signal processing kernels from FFmpeg and x265, VEGEN is
able to automatically use non-SIMD instructions and attain
speedup up to 3.4× (compared to LLVM’s vectorizer).

6. Why ASPLOS
We present a system that combines programming languages
and computer architecture. Our system demonstrates the pos-
sibility of automating code generation support for non-SIMD
instructions and systematically integrating these instructions
into a vectorizer. As hardware becomes more complicated to
accelerate compute-intensive domains, we believe, this is a
valuable contribution to the ASPLOS community.

7. Citation for Most Influential Paper Award
This is the first paper that describes the design and imple-
mentation of an automatic code generator generator for non-
SIMD vector instructions, which have important applications
in performance-critical domains such as DSP, image process-
ing, and machine learning. In addition to reducing the effort
required to develop vectorizing compilers, VEGEN is the first
system that systematically considers non-SIMD instructions
during vectorization, while previous work approaches rely pri-
marily on peephole rules. This work presented a simple design
to decouple the target-dependent components from a target-
independent vectorization algorithm while still exposing the
relevant information to make vectorization effective.

References
[1] Leonardo Bachega, Siddhartha Chatterjee, Kenneth A Dockser, John A

Gunnels, Manish Gupta, Fred G Gustavson, Christopher A Lapkowski,
Gary K Liu, Mark P Mendell, Charles D Wait, et al. A high-performance
simd floating point unit for bluegene/l: Architecture, compilation, and
algorithm design. In Proceedings. 13th International Conference on
Parallel Architecture and Compilation Techniques, 2004. PACT 2004.,
pages 85–96. IEEE, 2004.

[2] Sebastian Buchwald, Andreas Fried, and Sebastian Hack. Synthesizing
an instruction selection rule library from semantic specifications. In

2

https://software.intel.com/sites/landingpage/IntrinsicsGuide/
https://software.intel.com/sites/landingpage/IntrinsicsGuide/

Proceedings of the 2018 International Symposium on Code Generation
and Optimization, CGO 2018, page 300–313, New York, NY, USA,
2018. Association for Computing Machinery.

[3] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan,
Haichen Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze,
et al. {TVM}: An automated end-to-end optimizing compiler for deep
learning. In 13th {USENIX} Symposium on Operating Systems Design
and Implementation ({OSDI} 18), pages 578–594, 2018.

[4] Raimondas Sasnauskas, Yang Chen, Peter Collingbourne, Jeroen
Ketema, Jubi Taneja, and John Regehr. Souper: A synthesizing su-
peroptimizer. CoRR, abs/1711.04422, 2017.

3

	Motivation
	Limitations of the State of the Art
	Key Insights & Overview
	Main Artifacts
	Key Results and Contributions
	Why ASPLOS
	Citation for Most Influential Paper Award

