Extended Abstract: Effective simulation and debugging for a
high-level hardware language using software compilers

Clément Pit-Claudel, Thomas Bourgeat, Stella Lau, Arvind, Adam Chlipala
MIT CSAIL

1 Motivation

Hardware designs are expressed in a spectrum of languages
ranging from low-level RTL (Verilog [15] or VHDL [8]) to
sequential software languages with annotations for high-
level hardware synthesis (Vivado HLS [17], Handel-C [6],
Clash [12], etc.). Different points on this scale entail different
trade-offs. Verilog offers limited programming abstractions
and composability and thus is tedious to write and debug, but
it provides developers fine-grained control over the result-
ing circuits. HLS systems, i.e., the hardware design systems
that start from software languages to generate Verilog, offer
rich abstractions and excellent debugging and simulation
facilities but poor control over generated circuits. This is not
surprising: the sequential computation model of software
languages is deeply at odds with the hardware computation
models, which try to run all parts of a circuit in parallel all
the time.

Rule-based languages, such as Bluespec [9], Kbika [2],
and Kami [3], offer an interesting middle ground, with both
predictable performance and high-level, usable semantics.
Rule-based designs describe the manipulation of (hardware)
state elements using state-transforming atomic rules, which
(appear to) execute sequentially. An RTL compiler for such
a rule-based system introduces concurrency by translating
rules into individual circuits that run in parallel preserving
one-rule-at-a-time semantics.

While significant effort has been dedicated to synthesizing
high-quality hardware from Bluespec designs, comparatively
little effort has been expended on simulation, debugging,
and testing of rule-based designs: these tasks are typically
performed at the generated-Verilog level. This is non-ideal
for two reasons:

1. generated circuits suffer from poor readability due to
compiler optimizations breaking high-level abstrac-
tions, worsening the debugging experience, and

2. generated circuits are optimized for the hardware exe-
cution model where concurrency is free, rather than
the mostly sequential model of CPUs—this is ineffi-
cient for simulation.

Our work is motivated by the idea that architecture hob-
byists and researchers should be able to create hardware
designs easily: we want to enable architects to write in high-
level hardware-description languages without sacrificing
any of (1) the ability to generate efficient, synthesizable cir-
cuits with predictable performance characteristics, (2) direct
visbility of high-level abstractions when debugging, and (3)
simulation performance (in fact, we can leverage high-level
semantic properties to simulate faster).

2 Limitations of the State of the Art

Architects currently have three main options for simulation:
high-level non-architectural simulation, hardware simula-
tion using an FPGA, and cycle-accurate simulation on a
CPU. High-level, non-architectural simulation [1, 13] is fast.
However, the models do not cycle-accurately represent syn-
thesizable designs and have an unpredictable cost model.
Simulating on an FPGA is both fast and cycle-accurate. How-
ever, the synthesis, placement, and routing flow to compile a
design to run on an FPGA is slow, and so iterating on a design
is time-intensive. Furthermore, debugging on an FPGA is
challenging: even printf, the simplest tool used in debugging,
is unavailable.

Hence, we focus on cycle-accurate simulation on a CPU.
Verilog is a common language for writing RTL and describ-
ing circuits cycle-accurately. However, Verilog (analogously
to assembly) is intrinsicially hard to debug. Furthermore,
Verilog is often auto-generated, which makes it even more
inscrutable: translations are not designed for readability, and
high-level abstractions are lost in translation. Programmers
debugging Verilog mainly use printf and assertion debug-
ging, or they examine low-level waveforms. This is primitive
in comparison to software debugging, which offers powerful
tools like gdb [14], reverse debugging [4], and code profiling.

Tooling for RHDLs is also limited. Bluesim [10] (a
Bluespec-level cycle-based simulator) generates models
for simulation after multiple passes of compilation, which
leads to hard-to-read models. Furthermore, its performance
is poor, and so it is common to first compile to RTL and
then simulate the resulting circuit. This approach again
suffers from lack of readability and high-level abstraction: in
particular, there is limited support for exploring executions
below the cycle granularity.

In summary, with the state of the art, models generated
for simulation are not simultaneously designed for cycle-
accurate semantics, readability/debuggability, and simula-
tion performance.

3 Key Insights

Circuits compiled from high-level HDLs are optimized for
the concurrent execution model of hardware, rather than the
sequential model of CPUs. The hardware model has a tradeoff
between area and critical path: often you get faster circuits
with a shorter critical path by doing potentially redundant
work. Thus, a significant amount of code in Verilog is “dead”
at any given point. Modern simulators have been unable to
exploit this, and many signals are evaluated unnecessarily.



As an example, rule-based languages have an “early-exit”
semantics, with the compiler dynamically tracking whether
a rule “fails” at any point in its execution (e.g. by conflicting
with another rule resulting in breakage of the one-rule-at-a-
time semantics). A circuit does not have this luxury: after
a failure, the rest of the circuitry is still there, and it com-
putes all intermediate values of the rules. By specializing
our compilers for simulation, we can leverage this high-level
information to “early-exit” to avoid simulating dead code.

One key insight is the following: simulating a high-level
design and synthesizing hardware from a circuit description
are fundamentally different activities that deserve funda-
mentally different compilers making fundamentally different
assumptions and compilation choices. Thus, we should sepa-
rate the simulation and synthesis pipelines to allow compiler
specialization. Furthermore, by compiling to C++, we can
leverage existing compilers and toolchains (e.g. gdb, gcov [7],
gprof [5], rr [11]) to get fast and debuggable software models
for free (as compared to compiling directly to machine code,
which fails to take advantage of existing compiler optimiza-
tions and would be unusable for debugging).

The result is an improved hardware-development work-
flow: architects write in an RHDL with convenient abstrac-
tions, compile to a readable, cycle-accurate C++ model, debug
and profile with standard software tools, then synthesize to
RTL.

4 Main Artifacts

We present a methodology for better simulation of RHDLs,
leading to a better hardware design experience, and an open-
source compiler to C++ for the Kéika RHDL (Cuttlesim).

We evaluate the performance of Cuttlesim by benchmark-
ing embedded processor designs and DSP building blocks;
see Table 1. We compare primarily against Verilator, an open-
source, state-of-the-art Verilog simulator!. To evaluate the
hardware design and debugging process, we conduct a series
of case studies (functional-correctness-debugging of a cache
coherence protocol, functional validation of a design using
randomized testing, performance-debugging of an embed-
ded processor core, and design exploration adding a branch
predictor to an existing processor).

5 Key Results and Contributions

Performance results. As shown in Figure 1, Cuttlesim
consistently out-performed Verilator by a factor ranging
from 2x to 3x on small but realistic designs, including flavors
of an embedded-class RISC-V core and DSP designs (FFT,
finite impulse filter). Figure 2 shows that simulation with
Cuttlesim out-performed simulation with circuits generated

!The authors of Verilator write that “Verilator has typically similar or bet-
ter performance versus the closed-source Verilog simulators (Carbon Design
Systems Carbonator, Modelsim, Cadence Incisive/NC-Verilog, Synopsys VCS,
VTOC, and Pragmatic CVer/CVC).” [16]

Clément Pit-Claudel, Thomas Bourgeat, Stella Lau, Arvind, Adam Chlipala

by both Koéika and a commercial Bluespec compiler from
equivalent designs. As Kodika has not yet been used to design
very large systems, our benchmarks are all small to medium-
sized. While we do not believe that the results would be
different, more experience would be needed to generalize
the claims to very large designs.

Debugging and design-exploration methodology. The
case studies (Section 4.2) demonstrate novel and interesting
ways to apply software tools to hardware designs: code-
coverage tools operating at the source-line level provide a
wealth of architectural data without adding a single hardware
counter (getting, for example, branch misprediction counts
for free); reverse debuggers and hardware watchpoints al-
low quick bug-finding without consulting waveforms; and
sub-cycle, step-by-step debugging of readable models lets
one explore an unfamiliar design interactively, at a level
matching the original Kéika semantics. Ultimately, lever-
aging existing software toolchains enables a whole range
of novel and interesting hardware debugging and design
exploration methodologies.

Contributions.

1. We show how using completely separate toolchains for
software simulation and hardware synthesis leads to
faster simulation and improved debugging experience.

2. We describe techniques to build fast software models
of rule-based designs, using lightweight transactions.

3. We show that rule-based designs are amenable to
heavy optimization through static analysis that ex-
ploits the simplicity of the input language.

4. We give concrete evidence of the value of this approach
using simulation performance benchmarks and debug-
ging and design-exploration case studies.

6 Citation for Most Influential Paper
Award

This paper presented the last piece of a new hardware-
development toolchain based on completely separating simu-
lation and synthesis pipelines, enabling the design of circuits
with predictable performance, a debugging experience on
par with the one software developers have come to expect,
and simulation abilities matching the fastest-available com-
mercial and free simulators.

It was instrumental in allowing architecture hobbyists and
researchers to create hardware designs and explore architec-
tural ideas as easily as programmers write software.



Extended Abstract: Effective simulation and debugging for a high-level hardware language using software compilers

References [8] Zainalabedin Navabi. VHDL: Analysis and modeling of digital systems.
[1] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Rein- Mchaw-HiIl, -Inc., 1997. ] )
hardt, Ali Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar [9] Rishiyur Nikhil. Bluespec System Verilog: efficient, correct RTL from

—

[

Krishna, Somayeh Sardashti, Rathijit Sen, Korey Sewell, Muhammad
Shoaib, Nilay Vaish, Mark D. Hill, and David A. Wood. The gem5
simulator. SIGARCH Comput. Archit. News, 39(2):1-7, August 2011.
Thomas Bourgeat, Clément Pit-Claudel, Adam Chlipala, and Arvind.
The Essence of Bluespec: A Core Language for Rule-Based Hard-
ware Design. In Proceedings of the 41st ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI 2020,
page 243-257, New York, NY, USA, 2020. Association for Computing
Machinery.

[3] Joonwon Choi, Muralidaran Vijayaraghavan, Benjamin Sherman,

Adam Chlipala, and Arvind. Kami: A Platform for High-Level Paramet-
ric Hardware Specification and Its Modular Verification. Proc. ACM
Program. Lang., 1(ICFP), August 2017.

Jakob Engblom. A review of reverse debugging. In Proceedings of the
2012 System, Software, SoC and Silicon Debug Conference, pages 1-6.
IEEE, 2012.

Susan L Graham, Peter B Kessler, and Marshall K Mckusick. Gprof:
A call graph execution profiler. ACM Sigplan Notices, 17(6):120-126,
1982.

Mentor Graphics. Handle-C. https://www.mentor.com/products/fpga/
handel-c/.

[7] GNUGPL License. Geov: Gnu coverage tool.

high level specifications. In Proceedings. Second ACM and IEEE Inter-
national Conference on Formal Methods and Models for Co-Design, 2004.
MEMOCODE’04., pages 69-70. IEEE, 2004.

[10] Rishiyur S Nikhil. What is bluespec? ACM SIGDA Newsletter, 39(1):1-1,
2009.

[11] Robert O’Callahan, Chris Jones, Nathan Froyd, Kyle Huey, Albert Noll,
and Nimrod Partush. Engineering record and replay for deployability:
Extended technical report. arXiv preprint arXiv:1705.05937, 2017.

[12] QBayLogic. Clash: A modern, functional, hardware description lan-
guage. https://clash-lang.org/.

[13] Daniel Sanchez and Christos Kozyrakis. Zsim: Fast and accurate
microarchitectural simulation of thousand-core systems. In Proceedings
of the 40th Annual International Symposium on Computer Architecture,
ISCA ’13, page 475-486, New York, NY, USA, 2013. Association for
Computing Machinery.

[14] Richard Stallman, Roland Pesch, Stan Shebs, et al. Debugging with
GDB. Free Software Foundation, 675, 1988.

[15] Donald E. Thomas and Philip Moorby. The Verilog hardware description
language (3. ed.). Kluwer, 1996.

[16] Veripool. Verilator. https://www.veripool.org/wiki/verilator.

[17] Xilinx. Vivado hls. https://www.xilinx.com/products/design-tools/
vivado/integration/esl-design.html.


https://www.mentor.com/products/fpga/handel-c/
https://www.mentor.com/products/fpga/handel-c/
https://clash-lang.org/
https://www.veripool.org/wiki/verilator
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html

	1 Motivation
	2 Limitations of the State of the Art
	3 Key Insights
	4 Main Artifacts
	5 Key Results and Contributions
	6 Citation for Most Influential Paper Award
	References

