
BCD Deduplication: Effective Memory Compression Using Partial Cache-Line
Deduplication
Extended Abstract

Sungbo Park1, Ingab Kang2, Yaebin Moon2, Jung Ho Ahn2, and G. Edward Suh1

1Cornell University, 2Seoul National University

1. Motivation
Memory-intensive workloads such as in-memory databases
have large working sets, and their performance is often quite
sensitive to memory capacity. For example, if an application’s
working set does not fit in memory, disk accesses can signifi-
cantly degrade performance. Unfortunately, the main memory
(DRAM) cost is already a significant portion of the total cost
of modern data centers, and it is costly to simply increase
physical memory capacity. Moreover, large-capacity DRAM
modules consume a significant amount of energy; DRAM
consumes 20∼30% of the system energy in data centers [3].
Thus, reducing the physical DRAM capacity needed for a
given workload is important to save DRAM cost and energy
consumption.

2. Limitations of the State of the Art
Hardware-based memory compression techniques have the po-
tential to significantly reduce the DRAM cost and improve the
performance of memory-constrained applications by allowing
more data to be stored in given physical memory. However,
memory compression techniques need to carefully balance
complexity and compression ratio; complex compression al-
gorithms often achieve a higher compression ratio but may
lead to significant performance degradation due to additional
memory accesses and decompression latency.
Pattern-based Cache-Line Compression: Since additional
memory accesses may significantly hinder performance due
to the long latency, most memory compression techniques
operate at a cache-line granularity. These techniques have low
latency, but they often have relatively low compression ratios
because they cannot exploit redundancy beyond one cache
line.
Dictionary-Based Compression: Since a dictionary-based
approach requires additional accesses to the dictionary, only
a few schemes, including IBM’s Memory Expansion Tech-
nology (MXT) [2], have been proposed for main memory.
While MXT has a relatively high compression ratio, it has
long latencies to compress and decompress a 1-KB block at a
time. To hide the latencies, MXT uses a 32-MB cache in front
of the compressed memory. Even with the large cache, the
performance overhead would be significant for applications
with working sets larger than the large cache.
Memory Deduplication: Memory deduplication is a special
form of compression that stores only one copy of identical
memory blocks by adding a level of address translation. While
deduplication exploits redundancy across blocks, it is effective

Struct {
int sold_time;
int item;
int customer;
float price;
…

} Record
Record A = {1573412115, 1537, 456, 100.5, …};
Record B = {1573413201, 3568, 516, 120.3, … };

0x5dc8_5d13
(1573412115)

0x0000_0601
(1537)

0x0000_01c8
(456)

0x42c90000
(100.5)

…

0x5dc8_6151
(1573413201)

0x0000_0df0
(3568)

0x0000_0204
(516)

0x42f0a3d7
(120.3)

…

A

B

Figure 1: An example of cache lines that cannot be com-
pressed by cache-line compression.

only when multiple blocks are exactly the same.

3. Key Insights
A variable in typical programs tends to have values in a limited
range. This means that high-order bits of 4B or 8B data are
often identical for multiple variables in an array. For example,
if an array that has 16 4-B integers is stored in a cache line and
all the integers represent customers’ ages, they are likely less
than 150. Previous cache-line compression techniques such as
BDI [6] and Compresso [4] can leverage this redundancy if a
cache line contains a single type of variables. However, if a
cache line contains a structure or a class with multiple types
of variables, each with a different range, the line may not be
compressible in a traditional scheme. Figure 1 represents an
example of two cache lines where each contains a structure
with the same type. In this case, the bold high-order bits are
identical in both lines, but they cannot be reused by the tra-
ditional compression, deduplication, or straight combination
of the two. Our experiment results show that there is partial
redundancy (one half of the block is identical to another block)
for more than 60% of blocks in TPC-DS and TPC-H and 35%
in the SPEC2017 benchmarks. For these blocks, at least one
half can be reused across blocks.

4. Main Artifacts
To exploit the partial match among memory blocks (redun-
dancy in high-order bits), we propose Base and Compressed
Difference (BCD) deduplication, a novel combination of mem-
ory compression and deduplication that increases the effective
capacities of both last-level cache (LLC) and main memory.

Figure 2 presents an overview of BCD. On a write, BCD first
performs the traditional memory deduplication to compress
a data block that is identical to another one (full-match). If

6B2B …2B 6B

6B2B …2B 6B

=?

New Data

Stored Base

Full-match Base Dedup

6B2B …2B 6B

6B2B …2B 6B

New Data

Stored Base

…

=?

…

Base Dedup

…

…

Partial-match

XOR
Diff

LZC Compression

Diff Dedup

Compressed Diff

=?Diff match

Stored Diff

Figure 2: An overview of BCD deduplication.

TTC
BCD
Logic

RCC

MC

L2Core0

…

Machine Physical
Address Domain

OS Physical
Address Domain

Base Line
Diff Line
Sig Line

Trans
Line

RefCnt
Line

LLC

…
L2Coren

DDR0

DDRn

Figure 3: A processor architecture with BCD compressed LLC
and memory.

there is no block with a full match, BCD checks for a partial
match where the high-order 2B out of every 8B chunk within
a block is identical. For a partial match, the matched part
is deduplicated using the existing block as the base. The
difference between the new block and the base is calculated
using XOR operation. Then, the difference is compressed
using leading-zero count (LZC) [5] compression. Finally,
if there is the same compressed diff in memory, the diff is
deduplicated. In summary, when multiple blocks have the
same high-order bits, only one is fully stored in memory. For
the rest, only the differences are stored in a compressed and
deduplicated format.

While the scheme may look complex at a glance, BCD
can be implemented as an extension to the traditional dedu-
plication. The overhead is also still low; a read requires at
most three memory accesses, and a write can be optimized
by selectively applying different types of compression: base
full/partial deduplication, difference deduplication, and differ-
ence compression.

The main challenge in implementing BCD lies in reduc-
ing potential performance overhead from additional meta-data
accesses. To avoid the overhead, the proposed architecture
makes three key design decisions and optimizations. Figure 3
shows the architecture overview of BCD. First, BCD is ap-
plied at the boundary of the L2 caches and the LLC. In this
way, most meta-data are cached in the LLC and can often
be accessed without off-chip accesses. This design also in-
creases the effective capacity of the LLC and can improve
performance. Second, the architecture customizes caches to
match meta-data characteristics, including the translation table
cache (TTC), and the reference count cache (RCC). Finally, we
introduce a selective deduplication scheme to avoid dedupli-

cation overhead when applications do not benefit from added
deduplication steps.

To understand the effectiveness of BCD for a broad set of
applications, the compression ratios are first calculated from
memory dumps of SPEC2017 [1], TPC-DS [8], and TPC-
H [7]. Also, the performance impact of BCD is evaluated
using Zsim [9] with SPEC2017.

5. Key Results and Contributions
Compression Ratio from Memory Dumps: In our experi-
ment with memory dumps, BCD achieves an average 1.97×
memory compression for SPEC2017, TPC-DS, and TPC-H.
This compression ratio is 50.9% and 29.7% higher than that
of Compresso, which represents the state-of-the-art cache-line
compression scheme, and the combination of Compresso and
deduplication, respectively. In comparison, the naïve combina-
tion is only 8.8% better than Compresso. MXT is 17.3% better
than BCD, but performs compression/decompression at a 1-
KB granularity and needs a large uncompressed cache to avoid
significant performance overhead. BCD achieves compression
ratios close to MXT while only compressing/decompressing
one cache block at a time.
Performance Simulation: From the cycle-level simulation,
though BCD without selective dedup has a 3.4% slowdown
on average, BCD with selective dedup improves performance
by 2.7% on average. Therefore, BCD provides a significant
capacity gain with no noticeable performance overhead. If
the selective dedup is applied, BCD can even improve perfor-
mance by reducing LLC misses. In fact, the 2.7% speed-up
is comparable to the baseline with a 1.625x larger LLC (2.6%
speedup). Moreover, the speedup is significant (over 50%) for
a few benchmarks, and selective dedup effectively limits the
slowdown for some benchmarks.

The following summarizes the main contributions:
• We identify partial data redundancy across compression

blocks that cannot be exploited by today’s cache-line com-
pression or memory deduplication, or the straightforward
combination of the two.

• We propose Base and Compressed Difference (BCD) dedu-
plication, which is a new deduplication scheme that lever-
ages the partial inter-block data redundancy effectively.
BCD achieves main memory saving of 49.3% on average for
SPEC2017, TPC-DS, and TPC-H, which is 110% and 66%
higher than the state-of-the-art memory compression and the
naïve combination of the compression and deduplication.

• We introduce a hardware design that can effectively realize
the BCD scheme for both LLC and main memory with
low area overead, and achieve a performance improvement,
which corresponds to a 62.5% larger LLC for SPEC2017.

6. Why ASPLOS
Memory management is one area where hardware architecture
and an operating system are tightly coupled. Although BCD
is almost transparent to OS, it requires OS support for data
structure initialization, overflow, and selective deduplication.

2

References
[1] Spec cpu2017 home page. https://www.spec.org/cpu2017. Ac-

cessed: 2020-08-15.
[2] B. Abali, H. Franke, D. E. Poff, R. A. Saccone, C. O. Schulz, L. M.

Herger, and T. B. Smith. Memory expansion technology (mxt): Software
support and performance. IBM Journal of Research and Development,
45(2):287–301, March 2001.

[3] Luiz André Barroso, Jimmy Clidaras, and Urs Hölzle. The Datacenter
as a Computer: An Introduction to the Design of Warehouse-Scale
Machines, Second Edition. Morgan & Claypool Publishers, 2013.

[4] Esha Choukse, Mattan Erez, and Alaa R. Alameldeen. Compresso:
Pragmatic main memory compression. In Micro, 2018.

[5] Giorgos Dimitrakopoulos, Kostas Galanopoulos, Christos Mavrokefa-
lidis, and Dimitris Nikolos. Low-power leading-zero counting and
anticipation logic for high-speed floating point units. IEEE transactions
on very large scale integration (VLSI) systems, 16(7):837–850, 2008.

[6] Gennady Pekhimenko, Vivek Seshadri, Onur Mutlu, Phillip B. Gib-
bons, Michael A. Kozuch, and Todd C. Mowry. Base-delta-immediate
compression: Practical data compression for on-chip caches. In PACT,
2012.

[7] Meikel Poess and Chris Floyd. New tpc benchmarks for decision support
and web commerce. SIGMOD Record, 29(4), 2000.

[8] Meikel Poess, Bryan Smith, Lubor Kollar, and Paul Larson. Tpc-ds, tak-
ing decision support benchmarking to the next level. In ACM SIGMOD
International Conference on Management of Data, 2002.

[9] Daniel Sanchez and Christos Kozyrakis. Zsim: Fast and accurate mi-
croarchitectural simulation of thousand-core systems. In ISCA, 2013.

3

https://www.spec.org/cpu2017

	Motivation
	Limitations of the State of the Art
	Key Insights
	Main Artifacts
	Key Results and Contributions
	Why ASPLOS

