LifeStream: A High-performance Stream Processing Engine for Periodic Streams
Extended Abstract

Anand Jayarajan'#

, Kimberly Hau!, Andrew Goodwin?>, Gennady Pekhimenko!+*

'University of Toronto, 2The Hospital for Sick Children, *University of Sydney, 4Vector Institute

1. Motivation

Hospitals collect large amount of physiological data from in-
tensive care patients every day. Recently, researchers has been
making considerable progress in using statistical and machine
learning algorithms on physiological data to gain more insights
and provide improved medical diagnoses [13, 5]. Availabil-
ity of efficient data processing systems is crucial in enabling
this upward trend in the healthcare industry. Even though
big data processing has been a well-studied area, from our
experience closely working with the clinicians, data analysts,
and machine learning researchers at The Hospital for Sick
Children' [6] at Toronto, Canada, we recognize several new
requirements that make physiological data processing both
unique and challenging.

Simple and flexible programming interface with tempo-
ral logic support. Raw physiological data collected from
the patients contains high degree of noise and discontinuities.
Therefore, the data should to go through a series of data clean-
ing operations and transformations before it can be used for
meaningful analyses. In certain cases, researchers also need
to compute derived variables from the raw data. The choice
of operations performed on physiological data are highly use-
case specific and most of operations follow a strong notion of
the temporal ordering of the data. This necessitates the data
processing system to have a simple and flexible programming
interface with a rich temporal query language support.
Efficient hardware resource utilization. Common phys-
iological data processing use cases involve highly compute
intensive operations and need to process terabytes of data [7].
However, most hospitals only have limited computing infras-
tructure in-place as maintaining large machine clusters require
specific expertise that is hard to come by. Using cloud re-
sources is also usually not a viable option because the data
collected and stored at the hospitals are fully-identified, which
limits the movement of datasets outside the hospital facilities
in order to avoid the risk of leaking personal information about
the patients [8]. Therefore, the physiological data processing
system has to provide high performance by efficiently utilizing
the available limited hardware resources.

We observe that the currently available data processing
solutions [14, 1, 3] fail to match either of these two key re-
quirements. Our main goal in this work is to build a physio-
logical data processing system that is both easy to program
and provides high performance even under hardware resource
constraints.

!Canada’s largest pediatric hospital

2. Limitations of the State of the Art

Since physiological data is produced in a streaming manner,
stream processing engines are a natural choice for building the
physiological data processing pipelines. Most of the contem-
porary stream processing engines (e.g., Spark streaming [2],
Apache Beam [1], and Microsoft Trill [4]) provide a simple
and flexible declarative programming interface with rich set
of temporal operators. However, our experiments reveal that
even the state of the art streaming engines fall short in perfor-
mance compared to hand-optimized implementations available
in the numerical libraries (e.g., SciPy [10], NumPy [9], and
Scikit-learn [11]) on commonly used physiological data trans-
formation operations by 1 — 2 orders of magnitude because
of their sub-optimal hardware utilization (see Section 3 in the
main paper for more details).

Numerical libraries, on the other hand, does provide large
ecosystem of highly efficient data processing operations with
hand-tuned implementations, however, they fail to provide
simple and flexible programming interfaces that are suitable
for physiological data processing due to lack of implicit notion
of temporal ordering of the data, rigid API specifications, and
lack of a common data abstraction across different libraries.
This makes using numerical libraries an undesirable choice
for building physiological data processing pipelines in terms
of both ease of programming and ease of maintenance.

3. Key Insights

In this paper, we introduce LifeStream, a new high perfor-
mance stream processing engine for physiological data. We
make a key observation that data streams like physiological
data are produced at regular intervals (periodic) which can be
exploited to perform end-to-end optimizations on the stream
processing pipelines. LifeStream hits the sweet spot in both
ease of programming by providing a rich SQL-like temporal
query language support (Listing 1) and performance by em-
ploying three key optimizations utilizing the periodic nature
of the data.

LifeStream provides a data abstraction consisting of a
stream of events in chronological order. An event is a sin-
gle unit of data with three fields: (i) a user-defined payload,
(i1) a sync time dictating the time from which the event is
active, and (iii) a duration defining the active lifetime of the
event. Even though we are primarily targeting physiological
data, any streaming data that can be represented in this format
can take advantage of the benefits of LifeStream.

Next, we derive the following two key mathematical prop-



var left = sig500
.Multicast(s => s
.Select (e => e.val)

// cor

) .Mean (),
(val, mean) => val - mean));

.Join(s.TumblingWindow (1

var right = sig200
.Select (e => e.val); // select signal value

)0 values
)0 values

var output = left

/ join with sig

.Join(right, (1, r) => new {1, r});

Listing 1: An example query written in LifeStream

erties of the temporal operations on periodic streams.
Linearity property: The sync time of events in the output
stream of a temporal operator is a linear transformation of
that of the events in the input stream.

This property allows LifeStream to map the events in the out-
put stream of an operator to the corresponding parent events in
the input stream(s). This property also ensures that the output
stream generated by the temporal operators are also periodic.
Therefore, the linearity property is preserved throughout the
entire pipeline and can be used to track the entire lineage of
every event produced during query execution. We call this
mechanism event lineage tracking.

Bounded memory footprint: The memory footprint of a tem-
poral operator is bounded by the size of its inputs.

Even though streaming datasets are long and continuous se-
quence of events, the temporal operations applied on the
streams only need to consider events in a small interval at
any given time. We define the dimension(s) of a temporal
operator as the size of the interval(s) on which it operates. On
top of this, periodic streams can only have at most one event
active at any given point in time. Therefore, the total number
of events any temporal operators has to process is bounded by
its dimensions.

We use the above properties and propose the following three
key optimizations during query compilation and execution:
Locality tracing: Most contemporary streaming engines take
advantage of the locality of stream processing only at the
primitive operator-level. LifeStream, on the other hand, uses
linearity property to estimate the data locality of the end-to-
end pipeline through a process called locality tracing during
query compilation. The key idea behind locality tracing is to
adjust the dimensions of each temporal operators in the query
such that the intermediate results are consumed immediately
by the subsequent operator(s). This ensures the end-to-end
data locality is maximized.

Static memory allocation: Once the dimensions of every
temporal operators are finalized by locality tracing, LifeStream
estimates the upper bound of the memory required for each
operation in the pipeline using bounded memory footprint
property and preallocates the memory for all the intermedi-
ate results produced in the stream. This almost completely
eliminates the runtime memory allocation and deallocation
overhead commonly observed in other streaming engines [12].
Targeted query processing: Most streaming engines perform

Trill —=—

NumLib —e—
LifeStream —=—
1 1 1 1 1 1

million events per sec
N
o
|

0 5 10 15 20 25 30 35 40 45 50
Number of threads

Figure 1: Performance comparison of LifeStream against Trill
and numerical libraries (NumLib)

stream processing in an eager fashion where each temporal
operator performs the transformation on the input as soon as
it receives the data, and immediately passes it on to the next
operator down the pipeline, regardless of whether the next
operation would actually need to process that data or not. This
could lead to many redundant computations when multiple sig-
nals are joined together as the number of mutually overlapping
events are generally far fewer than the total number of events
in the streams (Figure 2 in the main paper), rendering any com-
putations on non-overlapping events wasteful. To avoid such
redundancy we introduce targeted query processing, which
uses the event lineage tracking mechanism to selectively exe-
cute the query on specific regions of the input stream where
an output is expected to be produced.

4. Key Results and Contributions

* We showcase the unique challenges involved with physiolog-
ical data processing and propose solutions that are evaluated
on real datasets and workloads used in major hospitals.

* We derive two key properties of temporal operations on
periodic streams, namely linearity and bounded memory
footprint, which are leveraged to propose three key opti-
mizations: (i) locality tracing, (ii) static memory allocation,
and (iii) targeted query processing, that can significantly
improve the hardware utilization and query execution per-
formance compared to the state of the art streaming engines.

* We propose LifeStream, a new high performance stream
processing engine with extended temporal query language
support. As shown in Figure 1, LifeStream can outperform
state of the art streaming engines by as much as 7.5x and
hand-optimized numerical libraries by as much as 3.2x
on the end-to-end data processing performance while also
providing much more flexible programming interface.

5. Conclusion

In this paper, we propose and implement LifeStream, a
new high performance stream processing engine for periodic
streams. We show that LifeStream can surpass the perfor-
mance of hand tuned numerical libraries without sacrificing
the flexibility of the programming interface available in mod-
ern stream processing engines. LifeStream is open sourced.”

Zhttps://github.com/anandj91/LifeStream


https://github.com/anandj91/LifeStream

References

[1]

[2]

[3]

[4]

[5]

[6]
[7]

[8]
[9]
[10]
[11]

[12]

(13]

[14]

Tyler Akidau, Robert Bradshaw, Craig Chambers, Slava Chernyak,
Rafael J. Ferndndez-Moctezuma, Reuven Lax, Sam McVeety, Daniel
Mills, Frances Perry, Eric Schmidt, and Sam Whittle. The dataflow
model: A practical approach to balancing correctness, latency, and cost
in massive-scale, unbounded, out-of-order data processing. Proceed-
ings of the VLDB Endowment, 8:1792-1803, 2015.

Michael Armbrust, Tathagata Das, Joseph Torres, Burak Yavuz, Shix-
iong Zhu, Reynold Xin, Ali Ghodsi, Ion Stoica, and Matei Zaharia.
Structured streaming: A declarative api for real-time applications in
apache spark. In Proceedings of the 2018 International Conference on
Management of Data, SIGMOD ’18, page 601-613, New York, NY,
USA, 2018. Association for Computing Machinery.

Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl,
Seif Haridi, and Kostas Tzoumas. Apache flink™: Stream and batch
processing in a single engine. /EEE Data Eng. Bull., 38:28-38, 2015.
Badrish Chandramouli, Jonathan Goldstein, Mike Barnett, Robert
DeLine, Danyel Fisher, John C. Platt, James F. Terwilliger, and John
Wernsing. Trill: A high-performance incremental query processor for
diverse analytics. Proc. VLDB Endow., 8(4):401-412, December 2014.
Ambika Choudhury and Deepak Gupta. A Survey on Medical Diagnosis
of Diabetes Using Machine Learning Techniques: I1C3 2018, pages
67-78. 01 2019.

The Hospital for Sick Children.
https://www.sickkids.ca/en/about/about-sickkids/.

Andrew J Goodwin, Danny Eytan, Robert W Greer, Mjaye Mazwi,
Anirudh Thommandram, Sebastian D Goodfellow, Azadeh Assadi,
Anusha Jegatheeswaran, and Peter C Laussen. A practical approach to
storage and retrieval of high-frequency physiological signals. Physio-
logical Measurement, 41(3):035008, apr 2020.

HHS. Your rights under hipaa.

Travis Oliphant. Numpy.

Travis Oliphant, Pearu Peterson, and Eric Jones. Scipy.

Fabian Pedregosa, Gaél Varoquaux, Alexandre Gramfort, Vincent
Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Pret-
tenhofer, Ron Weiss, Vincent Dubourg, Jake Vanderplas, Alexandre
Passos, David Cournapeau, Matthieu Brucher, Matthieu Perrot, and
Edouard Duchesnay. Scikit-learn: Machine learning in python. Journal
of Machine Learning Research, 12(85):2825-2830, 2011.

Gennady Pekhimenko, Chuanxiong Guo, Myeongjae Jeon, Peng
Huang, and Lidong Zhou. Tersecades: Efficient data compression
in stream processing. In 2018 USENIX Annual Technical Conference
(USENIX ATC 18), pages 307-320, Boston, MA, July 2018. USENIX
Association.

Jonathan G. Richens., Ciardn M. Lee, and Saurabh Johri. Improving the
accuracy of medical diagnosis with causal machine learning. Nature
Communications, 11(1):3923, Aug 2020.

Matei Zaharia, Reynold S. Xin, Patrick Wendell, Tathagata Das,
Michael Armbrust, Ankur Dave, Xiangrui Meng, Josh Rosen, Shiv-
aram Venkataraman, Michael J. Franklin, Ali Ghodsi, Joseph Gonzalez,
Scott Shenker, and Ion Stoica. Apache spark: A unified engine for big
data processing. Commun. ACM, 59(11):56-65, October 2016.



	Motivation
	Limitations of the State of the Art
	Key Insights
	Key Results and Contributions
	Conclusion

