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1. Motivation
Modern superscalar processors execute instructions out-of-
order, but commit them in program order to provide precise
exception handling and safe instruction retirement. However,
in-order instruction commit is highly conservative and holds
on to critical resources far longer than necessary, severely
limiting the reach of general-purpose processors, ultimately
reducing performance. Solutions that allow for efficient, early
reclamation of these critical resources could seize the opportu-
nity to improve performance. One such solution is out-of-order
commit, which has traditionally been challenging due to inef-
ficient, complex hardware used to guarantee safe instruction
retirement and provide precise exception handling.

In this work, we present NOREBA, a processor for Non-
speculative Out-of-order Retirement via Branch Reconver-
gence Analysis. NOREBA enables non-speculative out-of-
order commit and resource reclamation in a light-weight man-
ner, improving performance and efficiency. We accomplish
this through a combination of (1) automatic compiler annota-
tion of true branch dependencies, and (2) an efficient re-design
of the reorder buffer from traditional processors. By exploiting
compiler branch dependency information, this system achieves
95% of the performance of aggressive, speculative solutions,
without any additional speculation, and while maintaining
energy efficiency.

2. Limitations of the State of the Art
Prior OoO-commit proposals tend to fall into two categories:
(1) speculative [1, 4, 5, 11], and (2) non-speculative designs
[2, 6, 10]. Processor designs using speculative OoO-commit
typically require expensive checkpoint-and-restart mecha-
nisms in case the speculation fails. Implementing these struc-
tures in a speculative OoO-commit processor can be expensive,
reducing energy efficiency, especially for power-constrained
systems [4]. On the other hand, non-speculative OoO-commit
designs are more efficient as they do not require a checkpoint-
and-restart mechanism. However, all prior implementations
must resolve all preceding branches and memory accesses
before committing out-of-order which prevents them from
achieving the full potential of OoO-commit.

3. Key Insights
In-order commit of instructions and using FIFO-style re-
order buffers guarantees safe instruction retirement. However,
this solution requires that instructions wait for all preceding
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Figure 1: A simple if-then-else structure represented by basic
blocks marked by branch dependent code detection pass.

branches to resolve in order to release critical resources and
leaves a significant amount of performance on the table. The
key insight of this work is that many of these branch depen-
dencies are artificial. Dependency analysis shows that some
instructions do not always depend on the most recent branch in
the ROB. The main idea of this work is to use the compiler to
detect true branch dependencies of instructions and pass this
information to the hardware. The benefit of using the compiler
is that we can find the dependencies non-speculatively. By
informing the hardware about the true non-speculative branch
dependencies, the processor can commit instructions that are
independent of unresolved branches without the need for ex-
pensive checkpoint-and-restart mechanisms. Precise exception
handling can be enabled with proper communication between
the processor and the OS by exposing the changes of recently
OoO-committed instructions.

4. Main Artifacts
The three main components of NOREBA are: (1) a branch
dependent code detection compiler pass, (2) the OoO-commit
microarchitecture, and (3) precise exception handling.

4.1. Branch Dependent Code Detection Pass

We use a compiler pass to detect branch dependencies. This
pass first detects the reconvergence point for each branch. All
instructions between a branch and its reconvergence point
are control dependent. We then use the def-use chains of
values and alias analysis to find the instructions after the re-
convergence point that are data dependent to the branch and
its control dependent instructions. All remaining instructions
after the reconvergence point are independent of the branch
(See Figure 1). When we have a set of dependent instructions
for each branch, the compiler marks these regions in the pro-
gram with their true branch dependencies. We introduce a new
set of instructions to mark branch dependent regions.
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Figure 2: NOREBA Microarchitecture.

4.2. OoO-Commit Microarchitecture

Figure 2 shows the microarchitecture of NOREBA. We pro-
pose a set of new processor structures that allow for the flow
of dependency information from the compiler to the hardware
(Branch Dependencies Flow, See Figure 2). The Branch ID Ta-
ble (BIT) stores compiler-assigned IDs of branch instructions
and the Dependents Counter Table (DCT) stores the number
of consecutive instructions that will be dispatched next and
are dependent on a previous branch. The main innovation of
the proposed architecture is the Selective ROB that replaces
a traditional ROB with multiple FIFO queues that allow re-
ordering of non-speculative instructions that can commit early
and out-of-order. In addition, the Commit Queue Table (CQT)
provides dependency information for steering instructions to
multiple queues based on branch dependencies to improve
performance. Finally, we update the commit stage to allow for
out-of-order commit of instructions in a safe manner (OoO-
Commit Flow, See Figure 2) and handles branch misprediction
events using the Commit Instructions Table (CIT) that enables
the processor to not execute re-fetched instructions that have
already committed after a branch misprediction event (Branch
Misprediction Flow, See Figure 2).

4.3. Precise Exception Handling

We build NOREBA processor on top of the RISC-V ISA, which
limits exceptions to floating point and memory-related events.
In RISC-V based systems, we can accrue floating-point excep-
tions in floating-point control and status register, fcsr, and re-
port it at the end of execution. Memory-related exceptions can
arise in both the correct path of a correct branch prediction and
also the correct path of a branch misprediction (see Figure 3).
Our OoO-commit implementation waits for the success of the
page-table access before proceeding to out-of-order commit
instructions beyond the memory accesses. However, memory
exceptions arising in the correct path of a branch misprediction
can be more complex for precise exception handling since we
might have already committed some instructions out-of-order
beyond the reconvergence point (Figure 3b). In this case, we
switch to the OS to handle the exception. The OS can use the
CIT information to get the exact state of the microarchitecture
since the CIT contains all instructions committed out-of-order
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Figure 3: Two general cases of exceptions in NOREBA.

beyond the branch reconvergence point. We introduce a new
set of instructions to communicate between the CIT and the
OS.

4.4. Evaluation Methodology
We use LLVM [9] for our compiler analysis and the marking
of branch dependencies. To evaluate the core’s performance,
we use gem5 [3] in Syscall Emulation mode and implement
our OoO-commit design on top of the default out-of-order
core. We modify McPAT v1.3 with support for our design
for power and energy analysis. As a baseline core, we use a
Skylake-like processor. We target SPEC CPU2006 [8] and
MiBench [7] benchmark in our evaluations.

5. Key Contributions
Below are the key contributions of this work.
• We implement a low-complexity compiler pass for branch

dependency detection. We communicate this information
to the hardware, to allow for safe out-of-order commit of
independent instructions.

• We propose a novel Selective ROB that implements the out-
of-order commit of instructions using low cost hardware.
The Selective ROB allows for the reordering of instructions
to prioritize those that can commit early, without the addi-
tional hardware overheads typically seen in other solutions.

• We enable precise exceptions in the correct-path of branch
mispredictions with an efficient recovery mechanism that
exposes out-of-order-committed instructions to the OS for
handling of recovery or context switching.

Why ASPLOS? This paper connects three areas related to
ASPLOS, namely computer architecture, compilers, and op-
erating systems. The goal of this work is to propose a new
hardware architecture enhancement that enables high perfor-
mance and efficiency (computer architecture). To enable this,
we require knowledge from an LLVM pass, and propagate
that to the hardware (compilers). Finally, to support context
switching and precise exceptions, we require a new interface
with the OS to save and restore out-of-order commit state
(operating systems). The efficient interaction of the different
components in our design fits ASPLOS well.
Citation for Most Influential Paper Award. NOREBA is the
first efficient OoO-commit processor implementation that ad-
vances traditional out-of-order processors to reflect true in-
struction dependencies and manage critical resources more
intelligently.
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