
Sinan: ML-Based & QoS-Aware Resource Management for Cloud
Microservices

Yanqi Zhang, Weizhe Hua, Zhuangzhuang Zhou, Edward Suh, and Christina Delimitrou
Cornell University

1. Motivation

In recent years, cloud applications have progressively shifted
from monolithic services to graphs with hundreds of single-
purpose and loosely-coupled microservices [1, 4, 5, 12, 23, 24].
This shift is becoming increasingly pervasive, with large cloud
providers, such as Amazon, Twitter, Netflix, and eBay hav-
ing already adopted this application model [1, 4, 5]. Despite
advantages such as flexible development and rapid iteration,
microservices also introduce new challenges, especially in re-
source management, since the complex dependencies between
microservices exacerbate queueing effects, and introduce cas-
cading QoS violations that are difficult to identify and correct
in a timely manner [12, 28]. Given the increasing number
of cloud services now designed as microservices, addressing
their resource management challenges is a pressing need.

2. Limitations of the State of the Art

Current cluster managers are mainly designed for monolithic
applications, or applications consisting of a few pipelined tiers,
and are not expressive enough to capture the complexity of
microservices [13, 14, 15, 16, 17, 18, 21, 22, 25]. Traditionally-
employed empirical approaches based on resource utilization
thresholds, like autoscaling [3], or approaches based on queue-
ing analysis [27] result in significant QoS violations and re-
source inefficiency when applied to microservices.

On the other hand, machine learning-driven (ML) ap-
proaches have been shown to be effective at solving resource
management problems for large-scale systems in previous
work [7, 9, 20]. However, these methods are designed specifi-
cally for monolithic services or VMs operating independently
from each other, excluding interference effects from coloca-
tion [8, 9, 26], and hence cannot be directly applied to graph
of microservices. More recently, prior work examined the
potential of ML-driven techniques for performance debugging
in microservices, such as with Seer [11], however, perfor-
mance debugging is an invasive process that should ideally
only be relied on to correct resource allocations during events
of suboptimal performance, instead of being tasked with ad-
justing the resources of all active microservices in a cluster
at all times. Appropriately managing resources to begin with
lightens the burden on the performance debugging system,
allowing it instead to focus on quickly resolving unexpected
events introducing poor performance.

3. Key Insights

Sinan provides the following four insights regarding resource
management in microservices.

1. Dependencies among tiers: Resource management in mi-
croservices is additionally complicated by the fact that depen-
dent microservices are not perfect pipelines, and can introduce
backpressure effects that are hard to detect and prevent [12, 28].
These dependencies can be further exacerbated by the specific
RPC and data store API implementation. Therefore, the man-
ager should have a global view of the microservice graph, and
assess the impact of dependencies on end-to-end QoS.
2. System complexity and large action space: Microser-
vices change frequently, therefore resource management deci-
sions need to happen online. This means that the resource man-
ager must traverse a space that includes all possible resource
allocations per microservice in a practical manner. Unfortu-
nately prior empirical approaches that rely on either resource
utilization or queue length monitoring cannot be directly em-
ployed in microservices with tens of tiers and complex de-
pendencies for two reasons. First, microservice dependencies
mean that the resource usage of different tiers is codependent,
so examining fluctuations in individual tiers can attribute poor
performance to the wrong tier. Second, although queue lengths
are accurate indicators of system state for microservices, ob-
taining exact queue lengths is hard, as queues exist across the
system stack from the NIC and OS to the network stack and
application level. Accurately tracking queue lengths requires
application changes and heavy instrumentation, which can neg-
atively impact performance or is not possible in public clouds.
This is also the case when applications include third-party
software whose source code cannot be instrumented. Alter-
natively, expecting the user to express each tier’s resource
sensitivity is problematic, as users already have a hard time
reserving resources for simple single-tier services, leading to
well-documented underutilization [8, 9, 19], and the impact of
dependencies between microservices is especially difficult to
assess, even for expert developers.
3. Delayed queueing effect: Multi-tier microservices con-
form to queueing network principles. This means that, when
a queueing system’s processing throughput falls below the
offered load, queues will start accumulating. Despite this, the
service’s QoS target is not immediately violated, as queue
accumulation requires time. The converse is also true; by the
time QoS is violated, the built-up queues take a long time to
drain, even if resources are upscaled immediately upon de-
tecting the violation. Multi-tier microservices are complex
queueing systems with queues both across and within microser-
vices. This delayed queueing effect highlights the need for
automating the process of assessing a service’s performance
evolution after a resource allocation, and for proactively pre-
venting reducing resources too aggressively, to avoid latency
spikes with long recovery periods. We observe that to mitigate

1



a QoS violation, the manager must increase resources proac-
tively, otherwise the violation becomes unavoidable, even if
more resources are allocated a posteriori.
4. Importance of boundaries of the resource space: Given
the large resource allocation space in microservices, it is es-
sential for any resource manager to quickly identify the bound-
aries of that space that allow the service to meet its QoS
requirements, with the minimum amount of resources [10],
so that neither performance nor resource efficiency are sac-
rificed. Prior work often uses random exploration of the re-
source space [6, 9, 14] or uses prior system state as the training
dataset [11]. Unfortunately, while these approaches work for
simpler applications, in microservices they are prone to covari-
ant shift. Random collection blindly explores the entire space,
even though many of the explored points may never occur dur-
ing the system’s normal operation, and may not contain any
points close to the resource boundary of the service. On the
contrary, data from operation logs are biased towards regions
that occur frequently in practice, but similarly may not include
points close to the boundary, as cloud systems often overpro-
vision resources to safeguard QoS. To accelerate exploration
it is essential for a resource manager to efficiently examine
the necessary and sufficient number of resource settings that
allow it to just meet QoS with the minimum resources.

4. Contributions & Main Artifacts

To tackle the aformentioned challenges, we take a data-driven
approach that abstracts away the complexity of microservices
from the user, and leverages ML to assess the impact of re-
source allocations on end-to-end performance. We present
Sinan, a scalable and QoS-aware resource manager for inter-
active cloud microservices. Our major contributions are:
• Efficient boundary-aware space exploration We design

an efficient space exploration algorithm that quickly tra-
verses the resource allocation space, and guarantees the
exploration of boundary regions that may violate QoS.

• Hybrid ML model We design a hybrid ML model that pre-
dicts the near-future end-to-end latency and the probability
of a QoS violation for a resource configuration, given the
system’s state and history. Sinan uses this model to maxi-
mize resource efficiency while meeting QoS.

• Sinan design We build Sinan as a centralized resource man-
ager with distributed node agents, and deploy it both on a
controlled local cluster and a large cluster of GCE.

• Real system evaluation We deploy and validate our ML
models on the two clusters mentioned above using Docker
Swarm, demonstrate minimal estimation errors, and quantify
Sinan’s performance and efficiency gains over prior work.
Specifically, Sinan first uses an efficient space exploration

algorithm to traverse key points in the resource allocation
space, especially focusing on corner cases that violate QoS.
This yields a high quality training dataset used for two models:
a Convolutional Neural Network (CNN) for detailed short-
term performance prediction, and a Boosted Trees model that
evaluates the long-term performance evolution. The combi-

nation of the two models allows Sinan to both examine the
near-future outcome of a resource allocation, and to account
for the system’s inertia in building up queues with higher accu-
racy than a single model examining both time windows. Sinan
operates online, adjusting per-tier resources dynamically ac-
cording to the service’s status and end-to-end QoS. Sinan is
implemented as a centralized resource manager with global
visibility into the cluster, and with per-node resource agents
that track per-tier performance and resource utilization.

Finally, we demonstrate the explainability benefits of
Sinan’s models, delving into the insights they can provide
for the design of large-scale systems. Specifically, we use an
example of Redis’s log synchronization, which Sinan helped
identify as the source of unpredictable performance out of
tens of dependent microservices to show that the system can
offer practical and insightful solutions for clusters whose scale
make previous empirical approaches impractical.

5. Key Results
We evaluate Sinan using two end-to-end applications from
DeathStarBench [12]: a Social Network and a Hotel Reser-
vation site. Examined applications are deployed with Docker
Swarm and Locust [2] as the workload generator. We conduct
experiments both on a local cluster and on GCE.

We compare Sinan against both traditionally-employed em-
pirical approaches, such as autoscaling [3], and approaches
based on queueing analysis, such as PowerChief [27]. We
demonstrate that Sinan outperforms previous work both in
terms of performance and resource efficiency, successfully
meeting QoS for both applications under diverse load patterns.
On the simpler Hotel Reservation application, Sinan saves
25.9% of resources on average, and up to 46.0% compared
to other QoS-meeting methods. On the more complex Social
Network service, where abstracting application complexity is
more essential, Sinan saves 59.0% of resources on average,
and up to 68.1%, essentially accommodating twice the load,
without more resources. We also validate Sinan’s scalability
on Google Compute Engine (GCE), and demontrate that the
models collected from the local cluster can be reused on GCE
with only minor adjustments instead of global retraining.

6. Why ASPLOS
Sinan tackles resource management for microservices, an
emerging cloud programming model. Resource management
has been a popular topic in prior ASPLOS iterations, and in-
volves hardware (resource partitioning), OS (runtime schedul-
ing), and programming (application design and monitoring)
level challenges. Sinan applies ML to microservice manage-
ment, which also fits ASPLOS’s topic on ML for systems.

7. Citation for Most Influential Paper Award
For introducing ML-driven management to complex interac-
tive microservices, and for showing that in addition to per-
formance and efficiency gains, ML for cloud systems can
be explainable, insightful, and improve the management of
systems for which prior empirical techniques do not scale.

2



References
[1] Decomposing twitter: Adventures in service-oriented ar-

chitecture. https://www.slideshare.net/InfoQ/
decomposing-twitter-adventures-in-serviceoriented-architecture.

[2] Locust. https://locust.io/.
[3] Step and simple scaling policies for amazon ec2 auto scal-

ing. https://docs.aws.amazon.com/autoscaling/ec2/
userguide/as-scaling-simple-step.html.

[4] The evolution of microservices. https:
//www.slideshare.net/adriancockcroft/
evolution-of-microservices-craft-conference, 2016.

[5] Microservices workshop: Why, what, and how to get
there. http://www.slideshare.net/adriancockcroft/
microservices-workshop-craft-conference.

[6] Shuang Chen, Christina Delimitrou, and José F Martínez. Parties:
Qos-aware resource partitioning for multiple interactive services. In
Proceedings of the Twenty-Fourth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
pages 107–120. ACM, 2019.

[7] Eli Cortez, Anand Bonde, Alexandre Muzio, Mark Russinovich, Mar-
cus Fontoura, and Ricardo Bianchini. Resource central: Understanding
and predicting workloads for improved resource management in large
cloud platforms. In Proceedings of the 26th Symposium on Operating
Systems Principles, pages 153–167. ACM, 2017.

[8] Christina Delimitrou and Christos Kozyrakis. Paragon: QoS-Aware
Scheduling for Heterogeneous Datacenters. In Proceedings of the
Eighteenth International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS). Houston, TX,
USA, 2013.

[9] Christina Delimitrou and Christos Kozyrakis. Quasar: Resource-
Efficient and QoS-Aware Cluster Management. In Proceedings of
the Nineteenth International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS). Salt Lake
City, UT, USA, 2014.

[10] Peter J Denning. The working set model for program behavior. Com-
munications of the ACM, 11(5):323–333, 1968.

[11] Yu Gan, Meghna Pancholi, Dailun Cheng, Siyuan Hu, Yuan He, and
Christina Delimitrou. Seer: leveraging big data to navigate the com-
plexity of cloud debugging. In Proceedings of the 10th USENIX
Conference on Hot Topics in Cloud Computing, pages 13–13. USENIX
Association, 2018.

[12] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi,
Nayan Katarki, Ariana Bruno, Justin Hu, Brian Ritchken, Brendon
Jackson, et al. An open-source benchmark suite for microservices and
their hardware-software implications for cloud & edge systems. In
Proceedings of the Twenty-Fourth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
pages 3–18. ACM, 2019.

[13] Ching-Chi Lin, Pangfeng Liu, and Jan-Jan Wu. Energy-aware virtual
machine dynamic provision and scheduling for cloud computing. In
Proceedings of the 2011 IEEE 4th International Conference on Cloud
Computing (CLOUD). Washington, DC, USA, 2011.

[14] David Lo, Liqun Cheng, Rama Govindaraju, Luiz André Barroso, and
Christos Kozyrakis. Towards energy proportionality for large-scale

latency-critical workloads. In Proceedings of the 41st Annual Inter-
national Symposium on Computer Architecuture (ISCA). Minneapolis,
MN, 2014.

[15] David Meisner, Christopher M. Sadler, Luiz André Barroso, Wolf-
Dietrich Weber, and Thomas F. Wenisch. Power management of online
data-intensive services. In Proceedings of the 38th annual international
symposium on Computer architecture, pages 319–330, 2011.

[16] Ripal Nathuji, Canturk Isci, and Eugene Gorbatov. Exploiting platform
heterogeneity for power efficient data centers. In Proceedings of ICAC.
Jacksonville, FL, 2007.

[17] Ripal Nathuji, Aman Kansal, and Alireza Ghaffarkhah. Q-clouds:
Managing performance interference effects for qos-aware clouds. In
Proceedings of EuroSys. Paris,France, 2010.

[18] Kay Ousterhout, Patrick Wendell, Matei Zaharia, and Ion Stoica. Spar-
row: Distributed, low latency scheduling. In Proceedings of SOSP.
Farminton, PA, 2013.

[19] Charles Reiss, Alexey Tumanov, Gregory Ganger, Randy Katz, and
Michael Kozych. Heterogeneity and dynamicity of clouds at scale:
Google trace analysis. In Proceedings of SOCC. 2012.

[20] Krzysztof Rzadca, Pawel Findeisen, Jacek Swiderski, Przemyslaw
Zych, Przemyslaw Broniek, Jarek Kusmierek, Pawel Nowak, Beata
Strack, Piotr Witusowski, Steven Hand, et al. Autopilot: workload
autoscaling at google. In Proceedings of the Fifteenth European Con-
ference on Computer Systems, pages 1–16, 2020.

[21] Malte Schwarzkopf, Andy Konwinski, Michael Abd-El-Malek, and
John Wilkes. Omega: flexible, scalable schedulers for large compute
clusters. In Proceedings of EuroSys. Prague, Czech Republic, 2013.

[22] Zhiming Shen, Sethuraman Subbiah, Xiaohui Gu, and John Wilkes.
Cloudscale: elastic resource scaling for multi-tenant cloud systems. In
Proceedings of SOCC. Cascais, Portugal, 2011.

[23] Akshitha Sriraman and Thomas F Wenisch. usuite: A benchmark
suite for microservices. In 2018 IEEE International Symposium on
Workload Characterization (IISWC), pages 1–12. IEEE, 2018.

[24] Lalith Suresh, Peter Bodik, Ishai Menache, Marco Canini, and Florin
Ciucu. Distributed resource management across process boundaries.
In Proceedings of the 2017 Symposium on Cloud Computing, pages
611–623. ACM, 2017.

[25] Abhishek Verma, Luis Pedrosa, Madhukar R. Korupolu, David Oppen-
heimer, Eric Tune, and John Wilkes. Large-scale cluster management
at Google with Borg. In Proceedings of the European Conference on
Computer Systems (EuroSys), Bordeaux, France, 2015.

[26] Hailong Yang, Alex Breslow, Jason Mars, and Lingjia Tang. Bubble-
flux: precise online qos management for increased utilization in ware-
house scale computers. In Proceedings of ISCA. 2013.

[27] Hailong Yang, Quan Chen, Moeiz Riaz, Zhongzhi Luan, Lingjia Tang,
and Jason Mars. Powerchief: Intelligent power allocation for multi-
stage applications to improve responsiveness on power constrained
cmp. In Proceedings of the 44th Annual International Symposium
on Computer Architecture, ISCA ’17, page 133–146, New York, NY,
USA, 2017. Association for Computing Machinery.

[28] Hao Zhou, Ming Chen, Qian Lin, Yong Wang, Xiaobin She, Sifan
Liu, Rui Gu, Beng Chin Ooi, and Junfeng Yang. Overload control for
scaling wechat microservices. In Proceedings of the ACM Symposium
on Cloud Computing, pages 149–161. ACM, 2018.

3

https://www.slideshare.net/InfoQ/decomposing-twitter-adventures-in-serviceoriented-architecture
https://www.slideshare.net/InfoQ/decomposing-twitter-adventures-in-serviceoriented-architecture
https://locust.io/
https://docs.aws.amazon.com/autoscaling/ec2/userguide/as-scaling-simple-step.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/as-scaling-simple-step.html
https://www.slideshare.net/adriancockcroft/evolution-of-microservices-craft-conference
https://www.slideshare.net/adriancockcroft/evolution-of-microservices-craft-conference
https://www.slideshare.net/adriancockcroft/evolution-of-microservices-craft-conference
http://www.slideshare.net/adriancockcroft/microservices-workshop-craft-conference
http://www.slideshare.net/adriancockcroft/microservices-workshop-craft-conference

	Motivation
	Limitations of the State of the Art
	Key Insights
	Contributions & Main Artifacts
	Key Results
	Why ASPLOS
	Citation for Most Influential Paper Award

