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1. Motivation

Programming has changed; programming languages have not.
Modern software development has embraced abstraction and
reusable software components. Programs build on open-source
libraries (aka packages) that offer diverse, tested functionality
and increase programmer productivity. In the limit, an ap-
plication becomes a collection of packages orchestrated by
application-specific code. Modern languages have evolved
extensive public libraries and tools to publish, find, down-
load, use, and update public packages, for example, Python
modules [3], Golang packages [16], Ruby gems [4], and Rust
crates [5].

Although languages support the use of packages, few, if
any, provide a strong mechanism to deal with their inherent
insecurity and fragility. Packages come with challenges: (1)
they have no formal specification of what they do (or do not
do); (2) their developer is typically unknown, thus untrusted;
(3) they lack traceable dependency management – a package
can import unknown, untrusted dependencies; and (4) most
important, programs run in a single trust domain that does not
segregate code or data from different packages. In general, a
developer’s trust in a public package often seems to be based
on its popularity or a shallow code review. Careful inspection
is both impractical, since importing a single package may
incorporate hundreds or thousands of transitively dependent
packages [29, 30], or infeasible, as a package’s code may
change frequently. As a result, an application becomes a
patchwork of code from untrusted and unverified sources.

Malevolent individuals have been quick to exploit the
opportunity to insert malicious code in a popular pack-
age [9, 10, 14, 44], via IDEs [35], or to substitute modified
clones [11–13, 25]. These attacks are easy to implement and
provide unimpeded access to hundreds, if not thousands, of
applications, as they use conventional programming constructs
to insert code that steals private information or opens back-
doors. Examples include malicious Python packages that stole
SSH and GPG keys [10, 13] from the local file system. More
generally, even legitimate third-party libraries may implement
undocumented functionality that operates outside of its adver-
tised scope. For example, the Facebook iOS SDK, intended
to identify users, shared device information with Facebook
without user consent [43].

2. Limitations of the State of the Art

Although software isolation is a very long-studied topic in
the systems, programming languages, and security communi-
ties [7, 8, 15, 17, 18, 20, 22, 22–24, 26, 28, 31, 32, 34, 37, 39, 40],
previous approaches do not offer a clear solution for package
isolation and security: (1) pure systems approaches introduce
new low-level abstractions that may not match programming
language requirements [7, 15, 22, 26, 31, 32, 40] or may re-
quire application refactoring [8, 23, 24]; (2) pure language
approaches, e.g., Rust or Javascript isolates, are limited to a
single language and thus only apply to code written in this
language; (3) mixed approaches, e.g., Erim [37], Hodor [17],
and Glamdring [20], do not take into account deep dependen-
cies in the transitive dependency graph and the consequent
need for complex access rights. These mixed systems offer
the same isolation guarantees across a program, which re-
quires a developer to manually modify import dependencies to
achieve their desired isolation granularity, a process that can
be cumbersome or infeasible.

3. Key Insights

Packages, while the source of security and fragility problems,
have characteristics that make a solution possible. They con-
sist of code and data usually written to be able to run as part
of any program, which means they must have clearly defined
entry points, no dependencies on the program’s environment,
and must bring along their dependencies. Languages lack
a mechanism for taking a package and executing it and its
dependencies in a restricted environment where the package
cannot access the state of the entire program or the system on
which it is executing.

We propose a new programming language construct that
provides a developer with fine-grain control over the resources
that a package can access, even in modern software with com-
plex dependency graphs. The abstraction underlying this con-
struct is language-independent, so it can be incorporated into
most languages. Its implementation in these languages needs
support from a hardware isolation mechanism that is not tied to
a single language implementation since programs are typically
constructed from components written in several languages.
Fortunately, architectural features provide trustworthy, fine-
grain, hardware-based mechanisms that can enforce access
control within a virtual address space [1, 6, 19, 36, 41]. These



features are low level and difficult to use, so they have not
been widely accepted. Moreover, without agreement on how
to use them, they prevent language inter-operability.

This paper introduces enclosure, a programing construct
that binds a memory view and system calls allowed to a clo-
sure, restricting its access to a program’s resources according
to user-defined policies. The memory view defines the code
and data accessible by the closure, and is automatically de-
rived from the closure’s package dependencies. User-defined
policies can restrict the closure’s memory view or extend it,
by selectively enabling read, write, or execute access rights on
packages. They can also selectively authorize system calls.

Enclosure policies are enforced at run time by LITTERBOX,
a language-independent framework that uses hardware mecha-
nisms to provide strong uniform isolation guarantees, even for
packages written in unsafe languages. LITTERBOX exposes
a high-level API that abstracts the language-specific program
resources and is thus reusable across programming languages.
LITTERBOX can utilize different hardware technologies for
isolation and hides the intricacies of hardware.

4. Main Artifacts

Enclosures consist of two separate parts: (1) frontend
language-specific support, implemented by a language’s com-
piler and runtime, and (2) the backend responsible for using
hardware to enforce the closure’s memory view and filter sys-
tem calls (see Figure 3).

Language support for enclosures requires programming lan-
guage’s syntax, compiler, and runtime extensions. The syntax
is extended to declare enclosures and specify user-defined
policies. The compiler identifies the closure’s package depen-
dencies and relies on the linker to segregate their code and
data on separate memory pages. The runtime manages dy-
namically allocated objects on a per-package basis on separate
memory segments, called arenas. Creation, modification, and
transitions to enclosures restrictive execution environments
are managed by calling the backend that enforces isolation
based on hardware mechanisms.

We implemented a full-fledged enclosure extension for Go,
and a prototype one for Python, both based on the LITTERBOX
backend.

The LITTERBOX backend exposes a language-independent
small API to manage enclosures, hides low-level intricacies
and supports different hardware isolation mechanisms (Intel
VT-x and Intel MPK).

We evaluate our Go enclosure extension based on LITTER-
BOX. The evaluation uses popular Github Go packages and
proposes to benchmark the performance of small applications,
derived from each package’s "hello world" sample code, to
determine the worst-case performance overheads of LITTER-
BOX. In these applications, enclosures are used, in vastly
different ways, to safely leverage the unmodified public pack-

age. In one example, we isolate FastHTTP [38], a popular
library with 370K lines of code from over 100 contributors so
that it cannot access the memory outside of the enclosure, and
can only perform network system calls. In another example,
we isolate an untrusted, user-specific webserver handler from
the main HTTP stack. We also leverage enclosures to safely
expose senstive data to the popular Bild [33] image process-
ing library, while preventing modifications or leakage (e.g.,
via system calls).

To understand our performance results, we perform a com-
bination of microbenchmarks that exercise the low-level hard-
ware mechanisms (changes in protection keys for MPK, tran-
sitions with VT-x), combined with the performance evaluation
of our macrobenchmarks. The results show that VT-x has
lower overheads for memory-bound workloads than MPK.
System call interposition with VT-x is comparable in cost
to the use of a protected container layer such as Dune [7]
or gVisor/Sentry [42], but more expensive than the eBPF
patched [27] seccomp [2, 21] approach taken by our MPK
implementation.

5. Key Results and Contributions

This paper makes the following contributions:
• The enclosure programming construct, a simple way to

safely execute closures leveraging untrusted packages with
deep dependency graphs according to fine-grained user-
defined policies.

• LITTERBOX, a language-independent framework that en-
forces enclosure-defined policies with strong hardware iso-
lation mechanisms. LITTERBOX currently supports either
Intel VT-x (and its general-purpose extended page tables)
or the emerging, specialized Intel Memory Protection Keys
(MPK).

• The implementation of enclosures based on LITTERBOX
for the Go language, demonstrating low overheads for real-
world applications, and for Python, exhibiting support for
highly dynamic languages.

6. Why ASPLOS

This paper spans all three aspects of ASPLOS. We address
a significant deficiency of programming languages with a
language-agnostic system that uses processor mechanisms to
extend the operating system address space model with isola-
tion, which can be used to protect against threats from software
packages.

7. Citation for Most Influential Paper Award

This paper describes the original proposal to use enclosures
(which we now understand as closures with restricted memory
and system privileges) as a way to express trust in software
components used to assemble applications.
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