
Enclosures: language-based restriction of untrusted libraries
Extended Abstract

Adrien Ghosn
EPFL, Switzerland

Marios Kogias
EPFL, Switzerland

Mathias Payer
EPFL, Switzerland

James R. Larus
EPFL, Switzerland

Edouard Bugnion
EPFL, Switzerland

1. Motivation

Programming has changed; programming languages have not.
Modern software development has embraced abstraction and
reusable software components. Programs build on open-source
libraries (aka packages) that offer diverse, tested functionality
and increase programmer productivity. In the limit, an ap-
plication becomes a collection of packages orchestrated by
application-specific code. Modern languages have evolved
extensive public libraries and tools to publish, find, down-
load, use, and update public packages, for example, Python
modules [3], Golang packages [16], Ruby gems [4], and Rust
crates [5].

Although languages support the use of packages, few, if
any, provide a strong mechanism to deal with their inherent
insecurity and fragility. Packages come with challenges: (1)
they have no formal specification of what they do (or do not
do); (2) their developer is typically unknown, thus untrusted;
(3) they lack traceable dependency management – a package
can import unknown, untrusted dependencies; and (4) most
important, programs run in a single trust domain that does not
segregate code or data from different packages. In general, a
developer’s trust in a public package often seems to be based
on its popularity or a shallow code review. Careful inspection
is both impractical, since importing a single package may
incorporate hundreds or thousands of transitively dependent
packages [29, 30], or infeasible, as a package’s code may
change frequently. As a result, an application becomes a
patchwork of code from untrusted and unverified sources.

Malevolent individuals have been quick to exploit the
opportunity to insert malicious code in a popular pack-
age [9, 10, 14, 44], via IDEs [35], or to substitute modified
clones [11–13, 25]. These attacks are easy to implement and
provide unimpeded access to hundreds, if not thousands, of
applications, as they use conventional programming constructs
to insert code that steals private information or opens back-
doors. Examples include malicious Python packages that stole
SSH and GPG keys [10, 13] from the local file system. More
generally, even legitimate third-party libraries may implement
undocumented functionality that operates outside of its adver-
tised scope. For example, the Facebook iOS SDK, intended
to identify users, shared device information with Facebook
without user consent [43].

2. Limitations of the State of the Art

Although software isolation is a very long-studied topic in
the systems, programming languages, and security communi-
ties [7, 8, 15, 17, 18, 20, 22, 22–24, 26, 28, 31, 32, 34, 37, 39, 40],
previous approaches do not offer a clear solution for package
isolation and security: (1) pure systems approaches introduce
new low-level abstractions that may not match programming
language requirements [7, 15, 22, 26, 31, 32, 40] or may re-
quire application refactoring [8, 23, 24]; (2) pure language
approaches, e.g., Rust or Javascript isolates, are limited to a
single language and thus only apply to code written in this
language; (3) mixed approaches, e.g., Erim [37], Hodor [17],
and Glamdring [20], do not take into account deep dependen-
cies in the transitive dependency graph and the consequent
need for complex access rights. These mixed systems offer
the same isolation guarantees across a program, which re-
quires a developer to manually modify import dependencies to
achieve their desired isolation granularity, a process that can
be cumbersome or infeasible.

3. Key Insights

Packages, while the source of security and fragility problems,
have characteristics that make a solution possible. They con-
sist of code and data usually written to be able to run as part
of any program, which means they must have clearly defined
entry points, no dependencies on the program’s environment,
and must bring along their dependencies. Languages lack
a mechanism for taking a package and executing it and its
dependencies in a restricted environment where the package
cannot access the state of the entire program or the system on
which it is executing.

We propose a new programming language construct that
provides a developer with fine-grain control over the resources
that a package can access, even in modern software with com-
plex dependency graphs. The abstraction underlying this con-
struct is language-independent, so it can be incorporated into
most languages. Its implementation in these languages needs
support from a hardware isolation mechanism that is not tied to
a single language implementation since programs are typically
constructed from components written in several languages.
Fortunately, architectural features provide trustworthy, fine-
grain, hardware-based mechanisms that can enforce access
control within a virtual address space [1, 6, 19, 36, 41]. These



features are low level and difficult to use, so they have not
been widely accepted. Moreover, without agreement on how
to use them, they prevent language inter-operability.

This paper introduces enclosure, a programing construct
that binds a memory view and system calls allowed to a clo-
sure, restricting its access to a program’s resources according
to user-defined policies. The memory view defines the code
and data accessible by the closure, and is automatically de-
rived from the closure’s package dependencies. User-defined
policies can restrict the closure’s memory view or extend it,
by selectively enabling read, write, or execute access rights on
packages. They can also selectively authorize system calls.

Enclosure policies are enforced at run time by LITTERBOX,
a language-independent framework that uses hardware mecha-
nisms to provide strong uniform isolation guarantees, even for
packages written in unsafe languages. LITTERBOX exposes
a high-level API that abstracts the language-specific program
resources and is thus reusable across programming languages.
LITTERBOX can utilize different hardware technologies for
isolation and hides the intricacies of hardware.

4. Main Artifacts

Enclosures consist of two separate parts: (1) frontend
language-specific support, implemented by a language’s com-
piler and runtime, and (2) the backend responsible for using
hardware to enforce the closure’s memory view and filter sys-
tem calls (see Figure 3).

Language support for enclosures requires programming lan-
guage’s syntax, compiler, and runtime extensions. The syntax
is extended to declare enclosures and specify user-defined
policies. The compiler identifies the closure’s package depen-
dencies and relies on the linker to segregate their code and
data on separate memory pages. The runtime manages dy-
namically allocated objects on a per-package basis on separate
memory segments, called arenas. Creation, modification, and
transitions to enclosures restrictive execution environments
are managed by calling the backend that enforces isolation
based on hardware mechanisms.

We implemented a full-fledged enclosure extension for Go,
and a prototype one for Python, both based on the LITTERBOX
backend.

The LITTERBOX backend exposes a language-independent
small API to manage enclosures, hides low-level intricacies
and supports different hardware isolation mechanisms (Intel
VT-x and Intel MPK).

We evaluate our Go enclosure extension based on LITTER-
BOX. The evaluation uses popular Github Go packages and
proposes to benchmark the performance of small applications,
derived from each package’s "hello world" sample code, to
determine the worst-case performance overheads of LITTER-
BOX. In these applications, enclosures are used, in vastly
different ways, to safely leverage the unmodified public pack-

age. In one example, we isolate FastHTTP [38], a popular
library with 370K lines of code from over 100 contributors so
that it cannot access the memory outside of the enclosure, and
can only perform network system calls. In another example,
we isolate an untrusted, user-specific webserver handler from
the main HTTP stack. We also leverage enclosures to safely
expose senstive data to the popular Bild [33] image process-
ing library, while preventing modifications or leakage (e.g.,
via system calls).

To understand our performance results, we perform a com-
bination of microbenchmarks that exercise the low-level hard-
ware mechanisms (changes in protection keys for MPK, tran-
sitions with VT-x), combined with the performance evaluation
of our macrobenchmarks. The results show that VT-x has
lower overheads for memory-bound workloads than MPK.
System call interposition with VT-x is comparable in cost
to the use of a protected container layer such as Dune [7]
or gVisor/Sentry [42], but more expensive than the eBPF
patched [27] seccomp [2, 21] approach taken by our MPK
implementation.

5. Key Results and Contributions

This paper makes the following contributions:
• The enclosure programming construct, a simple way to

safely execute closures leveraging untrusted packages with
deep dependency graphs according to fine-grained user-
defined policies.

• LITTERBOX, a language-independent framework that en-
forces enclosure-defined policies with strong hardware iso-
lation mechanisms. LITTERBOX currently supports either
Intel VT-x (and its general-purpose extended page tables)
or the emerging, specialized Intel Memory Protection Keys
(MPK).

• The implementation of enclosures based on LITTERBOX
for the Go language, demonstrating low overheads for real-
world applications, and for Python, exhibiting support for
highly dynamic languages.

6. Why ASPLOS

This paper spans all three aspects of ASPLOS. We address
a significant deficiency of programming languages with a
language-agnostic system that uses processor mechanisms to
extend the operating system address space model with isola-
tion, which can be used to protect against threats from software
packages.

7. Citation for Most Influential Paper Award

This paper describes the original proposal to use enclosures
(which we now understand as closures with restricted memory
and system privileges) as a way to express trust in software
components used to assemble applications.

2



References
[1] Intel SGX - software guard extensions programming refer-

ences. https://software.intel.com/sites/default/files/
managed/48/88/329298-002.pdf.

[2] Linux seccomp. https://code.google.com/archive/p/
seccompsandbox/wikis/overview.wiki, 2020.

[3] Python Packge Index. https://pypi.org/, 2020.
[4] Rubygems stats. https://rubygems.org/stats, 2020.
[5] Rust the cargo book. https://doc.rust-lang.org/cargo/

commands/, 2020.
[6] ARM. Arm1136jf-s and arm1136j-s technical reference man-

ual. https://developer.arm.com/documentation/ddi0211/
latest/, 2020.

[7] Adam Belay, Andrea Bittau, Ali José Mashtizadeh, David Terei, David
Mazières, and Christos Kozyrakis. Dune: Safe User-level Access to
Privileged CPU Features. In Proceedings of the 10th Symposium on
Operating System Design and Implementation (OSDI), pages 335–348,
2012.

[8] Andrea Bittau, Petr Marchenko, Mark Handley, and Brad Karp. Wedge:
Splitting Applications into Reduced-Privilege Compartments. In Pro-
ceedings of the 5th Symposium on Networked Systems Design and
Implementation (NSDI), pages 309–322, 2008.

[9] Catalin Cimpanu. Somebody tried to hide a backdoor in a popular
javascript npm package. https://www.bleepingcomputer.com/
news/security/somebody-tried-to-hide-a-backdoor-in-
a-popular-javascript-npm-package/, 2018.

[10] Catalin Cimpanu. Backdoored Python Library Caught Stealing
SSH Credentials. https://www.bleepingcomputer.com/news/
security/backdoored-python-library-caught-stealing-
ssh-credentials/, 2019.

[11] Catalin Cimpanu. Malicious Python libraries targeting Linux
servers removed from PyPi. https://www.zdnet.com/article/
malicious-python-libraries-targeting-linux-servers-
removed-from-pypi/, 2019.

[12] Catalin Cimpanu. Twelve malicious Python libraries found and
removed from PyPi. https://www.zdnet.com/article/twelve-
malicious-python-libraries-found-and-removed-from-
pypi/, 2019.

[13] Catalin Cimpanu. Two malicious Python libraries caught steal-
ing SSH and GPG keys. https://www.zdnet.com/article/two-
malicious-python-libraries-removed-from-pypi/, 2019.

[14] Catalin Cimpanu. Malicious npm packages caught installing remote ac-
cess trojans. https://www.zdnet.com/article/malicious-npm-
packages-caught-installing-remote-access-trojans/,
2020.

[15] Nathan Dautenhahn, Theodoros Kasampalis, Will Dietz, John Criswell,
and Vikram S. Adve. Nested Kernel: An Operating System Architec-
ture for Intra-Kernel Privilege Separation. In Proceedings of the 20th
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS-XX), pages 191–206,
2015.

[16] Google. Golang add dependencies to the module and
install them. https://golang.org/cmd/go/#hdr-
Add_dependencies_to_current_module_and_install_them,
2020.

[17] Mohammad Hedayati, Spyridoula Gravani, Ethan Johnson, John
Criswell, Michael L. Scott, Kai Shen, and Mike Marty. Hodor: Intra-
Process Isolation for High-Throughput Data Plane Libraries. In Pro-
ceedings of the 2019 USENIX Annual Technical Conference (ATC),
pages 489–504, 2019.

[18] Terry Ching-Hsiang Hsu, Kevin J. Hoffman, Patrick Eugster, and Math-
ias Payer. Enforcing Least Privilege Memory Views for Multithreaded
Applications. In ACM Conference on Computer and Communications
Security, pages 393–405, 2016.

[19] Intel. Intel®64 and IA-32 Architectures Software Developer’s Manual,
2020.

[20] Joshua Lind, Christian Priebe, Divya Muthukumaran, Dan O’Keeffe,
Pierre-Louis Aublin, Florian Kelbert, Tobias Reiher, David Goltzsche,
David M. Eyers, Rüdiger Kapitza, Christof Fetzer, and Peter R. Piet-
zuch. Glamdring: Automatic Application Partitioning for Intel SGX.
In Proceedings of the 2017 USENIX Annual Technical Conference
(ATC), pages 285–298, 2017.

[21] Linux. SecComp Load Filter. https://man7.org/linux/man-
pages/man3/seccomp_load.3.html, 2020.

[22] James Litton, Anjo Vahldiek-Oberwagner, Eslam Elnikety, Deepak
Garg, Bobby Bhattacharjee, and Peter Druschel. Light-Weight Con-
texts: An OS Abstraction for Safety and Performance. In Proceedings
of the 12th Symposium on Operating System Design and Implementa-
tion (OSDI), pages 49–64, 2016.

[23] Lei Liu, Xinwen Zhang, Guanhua Yan, and Songqing Chen. Chrome
Extensions: Threat Analysis and Countermeasures. In Proceedings of
the 2012 Annual Network and Distributed System Security Symposium
(NDSS), 2012.

[24] Yutao Liu, Tianyu Zhou, Kexin Chen, Haibo Chen, and Yubin Xia.
Thwarting Memory Disclosure with Efficient Hypervisor-enforced
Intra-domain Isolation. In ACM Conference on Computer and Commu-
nications Security, pages 1607–1619, 2015.

[25] Lukas Martini. Fake version of dateutil and jellyfish. https://
github.com/dateutil/dateutil/issues/984, 2019.

[26] Jonathan M. McCune, Yanlin Li, Ning Qu, Zongwei Zhou, Anupam
Datta, Virgil D. Gligor, and Adrian Perrig. TrustVisor: Efficient TCB
Reduction and Attestation. In IEEE Symposium on Security and Pri-
vacy, pages 143–158, 2010.

[27] Michael Sammler. seccom: Add pkru into seccomp data. https:
//marc.info/?l=linux-api&m=154039581615478&w=2, 2018.

[28] Vikram Narayanan, Abhiram Balasubramanian, Charlie Jacobsen,
Sarah Spall, Scotty Bauer, Michael Quigley, Aftab Hussain, Abdullah
Younis, Junjie Shen, Moinak Bhattacharyya, and Anton Burtsev. LXDs:
Towards Isolation of Kernel Subsystems. In Proceedings of the 2019
USENIX Annual Technical Conference (ATC), pages 269–284, 2019.

[29] Nick Nikiforakis, Luca Invernizzi, Alexandros Kapravelos, Steven Van
Acker, Wouter Joosen, Christopher Kruegel, Frank Piessens, and Gio-
vanni Vigna. You are what you include: large-scale evaluation of
remote javascript inclusions. In ACM Conference on Computer and
Communications Security, pages 736–747, 2012.

[30] Nikola Ðuza. JavaScript Growing Pains: From 0 to 13,000 Dependen-
cies. https://blog.appsignal.com/2020/05/14/javascript-
growing-pains-from-0-to-13000-dependencies.html, 2020.

[31] Monirul I. Sharif, Wenke Lee, Weidong Cui, and Andrea Lanzi. Secure
in-VM monitoring using hardware virtualization. In ACM Conference
on Computer and Communications Security, pages 477–487, 2009.

[32] Le Shi, Yuming Wu, Yubin Xia, Nathan Dautenhahn, Haibo Chen,
Binyu Zang, and Jinming Li. Deconstructing Xen. In Proceedings of
the 2017 Annual Network and Distributed System Security Symposium
(NDSS), 2017.

[33] Anthony N. Simon. Bild: A collection of parallel image processing al-
gorithms in pure Go. https://github.com/anthonynsimon/bild,
2020.

[34] Michael M. Swift, Steven Martin, Henry M. Levy, and Susan J. Eggers.
Nooks: an architecture for reliable device drivers. In ACM SIGOPS
European Workshop, pages 102–107, 2002.

[35] Trend Micro. The XCSSET Malware: Inserts Mali-
cious Code Into Xcode Projects, Performs UXSS Back-
door Planting in Safari, and Leverages Two Zero-day Ex-
ploits. https://documents.trendmicro.com/assets/pdf/
XCSSET_Technical_Brief.pdf, 2020.

[36] Rich Uhlig, Gil Neiger, Dion Rodgers, Amy L. Santoni, Fernando
C. M. Martins, Andrew V. Anderson, Steven M. Bennett, Alain Kägi,
Felix H. Leung, and Larry Smith. Intel Virtualization Technology.
Computer, 38(5):48–56, 2005.

[37] Anjo Vahldiek-Oberwagner, Eslam Elnikety, Nuno O. Duarte, Michael
Sammler, Peter Druschel, and Deepak Garg. ERIM: Secure, Efficient
In-process Isolation with Protection Keys (MPK). In Proceedings of
the 28th USENIX Security Symposium, pages 1221–1238, 2019.

[38] Aliaksandr Valialkin. FastHTTP: Fast HTTP implementation for Go.
https://github.com/valyala/fasthttp, 2020.

[39] Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Susan L.
Graham. Efficient Software-Based Fault Isolation. In Proceedings of
the 14th ACM Symposium on Operating Systems Principles (SOSP),
pages 203–216, 1993.

[40] Zhi Wang and Xuxian Jiang. HyperSafe: A Lightweight Approach to
Provide Lifetime Hypervisor Control-Flow Integrity. In IEEE Sympo-
sium on Security and Privacy, pages 380–395, 2010.

[41] Jonathan Woodruff, Robert N. M. Watson, David Chisnall, Simon W.
Moore, Jonathan Anderson, Brooks Davis, Ben Laurie, Peter G. Neu-
mann, Robert M. Norton, and Michael Roe. The CHERI capability
model: Revisiting RISC in an age of risk. In Proceedings of the 41st
International Symposium on Computer Architecture (ISCA), pages
457–468, 2014.

[42] Ethan G. Young, Pengfei Zhu, Tyler Caraza-Harter, Andrea C. Arpaci-
Dusseau, and Remzi H. Arpaci-Dusseau. The True Cost of Containing:
A gVisor Case Study. In Proceedings of the 11th workshop on Hot
topics in Cloud Computing (HotCloud), 2019.

[43] Eric S. Yuan. Zoom’s Use of Facebook’s SDK in iOS
Client. https://blog.zoom.us/zoom-use-of-facebook-sdk-
in-ios-client/, 2020.

3

https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://code.google.com/archive/p/seccompsandbox/wikis/overview.wiki
https://code.google.com/archive/p/seccompsandbox/wikis/overview.wiki
https://pypi.org/
https://rubygems.org/stats
https://doc.rust-lang.org/cargo/commands/
https://doc.rust-lang.org/cargo/commands/
https://developer.arm.com/documentation/ddi0211/latest/
https://developer.arm.com/documentation/ddi0211/latest/
https://www.bleepingcomputer.com/news/security/somebody-tried-to-hide-a-backdoor-in-a-popular-javascript-npm-package/
https://www.bleepingcomputer.com/news/security/somebody-tried-to-hide-a-backdoor-in-a-popular-javascript-npm-package/
https://www.bleepingcomputer.com/news/security/somebody-tried-to-hide-a-backdoor-in-a-popular-javascript-npm-package/
https://www.bleepingcomputer.com/news/security/backdoored-python-library-caught-stealing-ssh-credentials/
https://www.bleepingcomputer.com/news/security/backdoored-python-library-caught-stealing-ssh-credentials/
https://www.bleepingcomputer.com/news/security/backdoored-python-library-caught-stealing-ssh-credentials/
https://www.zdnet.com/article/malicious-python-libraries-targeting-linux-servers-removed-from-pypi/
https://www.zdnet.com/article/malicious-python-libraries-targeting-linux-servers-removed-from-pypi/
https://www.zdnet.com/article/malicious-python-libraries-targeting-linux-servers-removed-from-pypi/
https://www.zdnet.com/article/twelve-malicious-python-libraries-found-and-removed-from-pypi/
https://www.zdnet.com/article/twelve-malicious-python-libraries-found-and-removed-from-pypi/
https://www.zdnet.com/article/twelve-malicious-python-libraries-found-and-removed-from-pypi/
https://www.zdnet.com/article/two-malicious-python-libraries-removed-from-pypi/
https://www.zdnet.com/article/two-malicious-python-libraries-removed-from-pypi/
https://www.zdnet.com/article/malicious-npm-packages-caught-installing-remote-access-trojans/
https://www.zdnet.com/article/malicious-npm-packages-caught-installing-remote-access-trojans/
https://golang.org/cmd/go/#hdr-Add_dependencies_to_current_module_and_install_them
https://golang.org/cmd/go/#hdr-Add_dependencies_to_current_module_and_install_them
https://man7.org/linux/man-pages/man3/seccomp_load.3.html
https://man7.org/linux/man-pages/man3/seccomp_load.3.html
https://github.com/dateutil/dateutil/issues/984
https://github.com/dateutil/dateutil/issues/984
https://marc.info/?l=linux-api&m=154039581615478&w=2
https://marc.info/?l=linux-api&m=154039581615478&w=2
https://blog.appsignal.com/2020/05/14/javascript-growing-pains-from-0-to-13000-dependencies.html
https://blog.appsignal.com/2020/05/14/javascript-growing-pains-from-0-to-13000-dependencies.html
https://github.com/anthonynsimon/bild
https://documents.trendmicro.com/assets/pdf/XCSSET_Technical_Brief.pdf
https://documents.trendmicro.com/assets/pdf/XCSSET_Technical_Brief.pdf
https://github.com/valyala/fasthttp
https://blog.zoom.us/zoom-use-of-facebook-sdk-in-ios-client/ 
https://blog.zoom.us/zoom-use-of-facebook-sdk-in-ios-client/ 


[44] Markus Zimmermann, Cristian-Alexandru Staicu, Cam Tenny, and
Michael Pradel. Small World with High Risks: A Study of Security
Threats in the npm Ecosystem. In Proceedings of the 28th USENIX
Security Symposium, pages 995–1010, 2019.

4


	Motivation
	Limitations of the State of the Art
	Key Insights
	Main Artifacts
	Key Results and Contributions
	Why ASPLOS
	Citation for Most Influential Paper Award

