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1. Motivation
In cloud environments, library OSs are gaining increasing
traction when users want to make deployed applications self-
contained in terms of OS functionality. They are used to
deploy lightweight unikernels [9, 5, 7], make containers more
efficient [12], and run shielded applications inside of trusted
execution environments (TEEs) [15, 11].

Library OSs such as Graphene [14], IncludeOS [1] and
Unikraft [7] are typically assembled from various independent
library components (e.g., file system libraries, network stacks,
and low-level drivers). To minimise the image size when
linked with an application, the components required for a
given application are selected at compile-time, and all OS
and application components then execute as part of a single,
unprotected address space.

This lack of compartmentalisation of library OS com-
ponents raises security, robustness and reliability concerns.
These issues are well-known deficiencies of monolithic de-
signs, especially when complexity library OS components are
exposed over the network [10]. For example, a vulnerability in
a file system implementation may be exploited to compromise
the library OS and application and then disclose encrypted
keys from the TLS implementation [2].

We therefore argue that current library OS designs risk
being a step backwards in terms of security, robustness and
reliability. The research question that we explore in this paper
is whether it is possible to design a modular and compartmen-
talised library OS with existing, third-party components, while
enforcing practical isolation between these components.

2. Limitations of the State-of-the-Art
Existing library OSs often follow monolithic designs that sim-
plify the integration of third-party components but lack com-
partmentalisation. In contrast, microkernel designs [6, 8, 4,
13] impose standard interfaces between kernel components,
e.g., based on message passing or RPC-like calls, which can be
used to enforce protection boundaries between components.

In a microkernel-style system, however, developers of iso-
lated components must carefully design component interfaces
to match the microkernel’s message passing primitives. For ex-
ample, this may affect the data structures used by components
because data must be serialised and deserialised through the
microkernel’s primitives each time components interact. As
developers try to reduce cross-component communication due
to its well-known overheads, i.e., memory copies and context
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Figure 1: Interaction of various library OS components when execut-
ing a web serving benchmark with NGINX (Numbered arrows signify
cross-component calls and their counts during the benchmark.)

switches performed by the microkernel, it also affects the na-
ture of interfaces that expose functionality across components.

When building a libraryOS, adjusting existing third-party
components in these ways becomes cumbersome; the diffi-
culty of this task becomes apparent if we look at the complex
interactions between the OS and application components of a
prototypical web server (NGINX), as shown in Figure 1. This
explains the popularity of monolithic designs, which do not
impose restrictions on interfaces and components. Especially
in library OSs that strive for full POSIX compatibility, e.g., to
execute current Linux applications and thus heavily rely on
existing OS components, we observe a strong preference for
monolithic designs. There seems to be a fundamental trade-
off between compartmentalisation and development burden in
library OSs.

3. Key Insights

Our goal is to retain the flexibility of arbitrary interfaces be-
tween components, as found in monolithic kernel designs,
while compartmentalising the system to enforce spatial and
temporal memory isolation with an acceptable performance
overhead and without invasive source code changes.

We present a system – CubicleOS – that automatically iso-
lates OS and application components in a rich library OS,
while allowing them to share dynamically arbitrary data used
across function calls. CubicleOS uses Intel’s support for Mem-
ory Protection Keys (MPK) to efficiently compartmentalise
the system, while at the same time allowing on-demand data
sharing across compartment calls.

CubicleOS thus presents a system that conjoins existing
monolithic library OS code bases with strong isolation guaran-
tees without performing expensive data copies or interacting



with the privileged host OS on the critical path.

4. Main Artefacts

We implement CubicleOS on top of Unikraft [7], a feature-
rich library OS that can execute existing POSIX-compatible
applications, and runs on top of a host OS such as Linux.
CubicleOS offers three core abstractions to component devel-
opers: (i) cubicles, which are isolated components; (ii) win-
dows, which enable dynamic sharing across components; and
(iii) cross-cubicle calls, which carry out control flow authori-
sation. Together, these abstractions provide spatial memory
isolation, temporal memory isolation and control flow integrity,
respectively.

CubicleOS enforces the isolation policies expressed by de-
velopers (via the abstractions introduced above) using four
complementary methods: (1) a trusted build tool that automat-
ically identifies components (cubicles) to isolate and generates
additional trusted code for each exported function in a cubicle
(cross-cubicle call trampolines); (2) a trusted binary cubicle
loader that verifies no untrusted code uses instructions that
would affect the integrity of the security mechanisms (neces-
sary because Unikraft executes as a user-level process); (3) a
small, trusted run-time that uses Intel MPK and the cross-
cubicle call trampolines generated above to efficiently isolate
cubicles without host OS intervention in the critical path; and
(4) a trivial extension to Intel’s MPK implementation that en-
sures control flow integrity across cubicles without resorting to
multiplexing all cross-cubicle calls through a central authority.

5. Key Results and Contributions

We evaluate CubicleOS using an embedded database en-
gine (SQLite) and a web server application (NGINX). We
show that it is between 3× and 5× faster than a state-of-the-art
microkernel with equivalent isolation guarantees (Genode [3]),
and between 1.7× and 8× slower than a non-isolated Unikraft
baseline. These results can be obtained with only moderate
source code changes without impacting the design of existing
OS and application component interfaces.

The core contribution of CubicleOS is the compartmental-
isation of the monolithic architecture of an existing library
OS, without fundamentally altering the design of its existing
interfaces. We believe that this is a necessary step forward,
and shows that the requisite compartmentalisation of library
OSs is not at odds with maintaining their existing monolithic
architectures.

6. Why ASPLOS

The paper provides system abstractions and mechanisms to
integrate isolation with existing monolithic codebases in a
library OS, using recent hardware support (Intel MPK) and
automated code analysis and generation to enforce isolation
without disruptive code changes.

7. Citation for Most Influential Paper Award
This work addresses the concern around the lack of compart-
mentalisation in existing library OSs. By emphasising the
ability to compartmentalise monolithic codebases without dis-
ruptive changes to their design, the paper has had an enduring
influence on improving the security, robustness and reliability
of library OS implementations in a practical way.

8. Revisions
The paper has no previous revisions.
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