
Autonomous NIC Offloads

Boris Pismenny†� Haggai Eran†� Aviad Yehezkel� Liran Liss� Adam Morrison‡ Dan Tsafrir†±

† Technion – Israel
Institute of Technology

�Mellanox ‡ Tel Aviv
University

±VMware
Research

1. Motivation
Layer-5 networking protocols (L5Ps) built on top of TCP are
widely used. Examples include (1) the transport layer se-
curity (TLS) cryptographic protocol [1, 2], which provides
secure communications; (2) storage protocols, such as NVMe-
TCP [3], which allow systems to use remote disk drives as
local block devices; (3) remote procedure call (RPC) proto-
cols, such as Thrift [4] and gRPC [5]; and (4) key-value store
protocols, such as Memcached [6] and MongoDB [7].

It is in the nature of L5P processing to be bottlenecked by
data-intensive operations, which move date while optionally
transforming and/or computing some function over it. In most
cases, this data-intensive processing consists of some sub-
set of the following: (1) encryption/decryption, (2) copying,
(3) hashing, (4) (de)serialization, and (5) (de)compression [8].
Consequently, it is beneficial to accelerate these data-intensive
operations, to improve the performance of systems that utilize
and depend on the L5Ps.

2. Limitations of the State of the Art
We classify prior approaches for accelerating L5P process-
ing into three categories. The first is software-based, which
includes in-kernel L5P implementations, such as NVMe-
TCP [9, 10] and TLS [11] in the Linux kernel, and specialized
software stacks that bypass the kernel and leverage direct hard-
ware access [12, 13]. These techniques are good for reducing
the cost of system software abstractions. But they are largely
irrelevant for accelerating data-intensive operations.

The second category consists of on-CPU acceleration, and
it encompasses specialized data-processing CPU instructions,
such as those supporting the advanced encryption standard
(AES) [14, 15], secure hash algorithms (SHA) [16, 17], and
cyclic redundancy check (CRC) error detection [18, 19]. These
instructions can be effective in accelerating L5Ps. But they
themselves then become responsible for most of the L5P pro-
cessing cycles, motivating the use of off-CPU accelerators,
which comprise the third category. We subdivide the latter
into two: accelerators that are off and on the networking path.

The goal of off-path acceleration is to offload the operation
onto a separate device, such as GPUs in APUNet [20] and
Intel QuickAssist in QTLS [21]. The problems with off-path
accelerators are: (1) that the CPU still spends cycles on feeding
the accelerator and retrieving results; (2) that applications
may need to be rewritten so that the CPU is kept busy while
waiting for the accelerator (e.g., QTLS re-engineers the TLS
software stack and Nginx to increase parallelism); and (3) that

they consume memory bandwidth and increase latency due to
accelerator communication overheads, such as DMA. Overall,
off-path acceleration is suboptimal [21, 22].

On-path accelerators—namely, NICs—do not suffer from
the above problems. CPUs necessarily operate NICs in any
case as part of the L5P, and NICs may process the data while
it flows through them without incurring additional overheads;
they are ideally situated for L5P processing. In fact, NICs al-
ready seamlessly handle offloaded computation for the under-
lying layer≤4 protocols, such as packet segmentation, aggre-
gation, and checksum computation/verification [23, 24, 25].

Despite their ideal suitability, however, L5P NIC offloads
are not pervasive. The reason: existing designs assign NICs
with the role of handling the L5P, which in turn necessitates
that the NICs also handle layer≤4 functionality upon which
the L5P depends—notably TCP/IP [26, 27, 28, 29]. Such of-
fload dependence is undesirable, because a hardware TCP im-
plementation encumbers innovation in the network stack [30]
and slows down fixes when robustness [31] or security is-
sues [32, 33] arise. Consequently, Linux kernel developers
refused to support TCP offloads [34, 35], and Windows has
recently deprecated such support [36].

3. Key Insights

We propose autonomous NIC offloads. Autonomous offloads
consist of a combined software/NIC architecture for mov-
ing data between L5P memory and TCP packets, optionally
transforming the data and/or computing some function in the
process. This architecture allows L5P software to offload
data-intensive operations to the NIC, without migrating the
entire TCP/IP stack into the NIC. Autonomous offloads target
L5P implementations in which the L5P and NIC driver can
communicate directly, e.g., in-kernel L5P implementations or
implementations with userspace TCP/IP stacks.

The main idea of autonomous offloads is for the L5P and
NIC to collaborate in processing of L5P messages (which can
consist of multiple TCP segments) in a way that is transparent
to the intermediating TCP stack. When sending a message, the
L5P code “skips” performing the offloaded operation, thereby
passing the “wrong” bytes down the stack to the NIC. The NIC
then performs the operation, resulting in a correct message
being sent on the wire. In the reverse direction, the NIC parses
incoming messages, performs the offloaded operation, and the
partially-processed message is passed up the stack to the L5P,
which completes its processing.

For this approach to work seamlessly, we require that the

1

offloaded operation satisfy certain conditions, notably, that the
offloaded operation only manipulates bytes in L5P messages
and never adds or removes bytes. This property allows the
offload to process the TCP stream without modifying TCP
control information. While this limitation means we cannot
offload every data-intensive operation, a key practical observa-
tion is that the lion’s share of L5P data-intensive computations
satisfy our conditions. Out of (1) encryption/decryption, (2)
copying, (3) digests/checksums, (4) (de)serialization, and (5)
(de)compression—which are the primary data-intensive L5P
bottlenecks [8]—only (4) and (5) are partially out of scope.

A major challenge in realizing the conceptually simple idea
of autonomous offloads is handling “interference” from the
TCP layer, in the form of lost, duplicated, or retransmitted
bytes. Our design handles this challenge through three main
ideas: (1) we optimize for the common case by maintaining a
small context at the NIC required to process the next in-order
TCP packet; (2) we fall back on L5P software processing
upon out-of-sequence packets caused by reordering or loss; in
which case (3) the L5P software helps the NIC to synchronize
and reconstruct a new valid context using a simple interface
between the NIC and the L5P.

A potential pitfall of such a collaborative resynchronization
mechanism is that the NIC might get permanently “left behind.”
That is, by the time L5P software updates the NIC’s context,
more TCP segments have arrived, thereby making that new
context stale and thus requiring another resynchronization.

Our solution to this problem relies on two insights. First, we
observe that in our targeted offload operations, the required of-
fload context can be recomputed after identifying L5P message
boundaries. This property reduces the problem of reconstruct-
ing offload context to the problem of identifying L5P message
boundaries. Second, we observe that in most modern L5Ps,
message boundaries are identifiable with specific “magic pat-
terns” and contain length fields. This property enables us to
design a hardware-driven context resynchronization process,
in which the NIC speculatively identifies arriving messages
and relies on software to confirm its speculation. While the
NIC waits for software to resolve its speculation, it tracks mes-
sages within TCP packets using the L5P header’s length field,
verifying that each subsequent L5P message begins where it is
expected to. If an unexpected pattern is encountered, the NIC
realizes its speculation was incorrect and retries. If, however,
the NIC’s speculation is correct, then it remains synchronized
until receiving confirmation from L5P software. At this point,
the NIC can resume offloading as soon as possible.

4. Main Artifacts
The paper describes autonomous offload implementations
(hardware and software) for TLS and NVMe-TCP. Our TLS
offload is already implemented Mellanox ConnectX6-Dx
NICs [37]; it offloads TLS’s authentication, encryption, and
decryption functionalities. Our NVMe-TCP offload will be-
come available in the subsequent NIC model; it offloads data

L5P application offloads max improvement
t/put util lat

NVMe-TCP fio copy, CRC 2.2x 2.0x 1.3x
TLS iperf crypto 3.3x 2.4x N/A
NVMe-TCP nginx/http copy, CRC 1.4x 1.3x 1.2x
TLS nginx/https crypto 2.7x 1.3x 1.2x
both (NVMe-TLS) nginx/https all above 2.8x 1.7x 1.4x
both (NVMe-TLS) redis all above 2.3x 1.9x N/A

Table 1: Summary of evaluation results – throughput (“t/put”), CPU
utilization (“util”), and latency (“lat”). Data is served either from
memory (TLS), or from a remote disk over NVMe-TCP, which can
also be encrypted with TLS (NVMe-TLS). In NVMe-TLS, crypto
is offloaded for both sent HTTPS and received NVMe-TLS traffic.

“Crypto” is AES128-GCM encryption/decryption and authentication.

placement at the receiving end (which thus becomes zero-
copy) and also CRC computation and verification at either end.
Linux kernel support for the TLS offload has been upstreamed,
and support for the NVMe-TCP offload is currently under
review.

We evaluate the throughput, latency, and CPU utilization im-
provements achieved using our offloads on both microbench-
marks and macrobenchmarks. As microbenchmarks, we use
iperf [38] for TLS and fio [39] for NVMe-TCP. As mac-
robenchmarks, we use the nginx http web server [40] and
the Redis-on-Flash (RoF) key-value store [41, 42]. Both appli-
cations serve files to clients: When serving files from memory,
they are network bound and stress TLS. When serving files
from a remote NVMe device, they stress NVMe-TCP. We also
evaluate a combined workload: serving files located on a re-
mote device over a TLS connection. All experiments use real
TLS offloading hardware and emulated NVMe-TCP offload-
ing, since the NVMe-TCP offload NIC is not yet available.

5. Key Results and Contributions

• Defining, designing, and implementing autonomous NIC
offloads, which provide a stateful, nonintrusive software/de-
vice architecture that accelerates TCP-based L5Ps by lever-
aging the existing TCP/IP stack rather than subsuming it.

• A cooperative software/NIC design for handling TCP packet
loss/reordering that (1) allows the NIC to perform compu-
tations in hardware in the common case; (2) falls back on
L5P software processing upon out-of-sequence packets; and
then (3) re-synchronizes NIC state with minimal help from
software so the NIC can resume offloading.

• An implementation of autonomous offloads for (1) NVMe-
TCP copy and CRC, and (2) TLS encryption, decryption,
and authentication, and (3) their composition (NVMe-TLS).

• Experimental evaluation of a full (ASIC) 100 Gbps TLS of-
fload and an emulation of the upcoming NVMe-TCP offload.
Our autonomous offloads improve throughput by up to 3.3x
and lower CPU consumption and latency by as much as 2.4x
and 1.4x. Table 1 summarizes the results.

2

References
[1] Tim Dierks and Eric Rescorla. The transport layer security (TLS)

protocol version 1.2. RFC, RFC Editor, 2008.
https://rfc-editor.org/rfc/rfc5246.txt.

[2] Eric Rescorla. The transport layer security (TLS) protocol version 1.3.
RFC, RFC Editor, 2018.
https://rfc-editor.org/rfc/rfc8446.txt.

[3] NVM Express Workgroup. NVMe/TCP transport binding specification.
https://nvmexpress.org/wp-content/uploads/NVM
-Express-over-Fabrics-1.0-Ratified-TPs.zip, Nov
2018. Accessed: Jan 2020.

[4] Mark Slee, Aditya Agarwal, and Marc Kwiatkowski. Thrift: Scalable
cross-language services implementation. Facebook White Paper, 5(8),
2007. https://thrift.apache.org/static/files/thr
ift-20070401.pdf.

[5] Google. gRPC: a high-performance, open source universal RPC
framework. https://grpc.io/, 2015. Accessed: 2020-03-05.

[6] Brad Fitzpatrick. Distributed caching with memcached. Linux Journal,
2004(124):5, Aug 2004. http:
//dl.acm.org/citation.cfm?id=1012889.1012894.

[7] Rick A. Jones. MongoDB: The database for modern applications.
https://www.mongodb.com/, 2009. Accessed: August, 2020.

[8] Svilen Kanev, Juan Pablo Darago, Kim Hazelwood, Parthasarathy
Ranganathan, Tipp Moseley, Gu-Yeon Wei, and David Brooks.
Profiling a warehouse-scale computer. In ACM International
Symposium on Computer Architecture (ISCA), pages 158—-169, 2015.
https://doi.org/10.1145/2872887.2750392.

[9] Jaehyun Hwang, Qizhe Cai, Ao Tang, and Rachit Agarwal. TCP ≈
RDMA: CPU-efficient remote storage access with i10. In USENIX
Symposium on Networked Systems Design and Implementation (NSDI),
pages 127–140, 2020. https://www.usenix.org/confere
nce/nsdi20/presentation/hwang.

[10] Sagi Grimberg. TCP transport binding for NVMe over Fabrics.
https://lwn.net/Articles/772556/, 2018. Accessed:
2020-03-24.

[11] Watson Dave, Pismenny Boris, Lesokhin Ilya, and Yehezkel Aviad.
kernel TLS. https://lwn.net/Articles/725721/, 2017.
Accessed: 2020-03-24.

[12] Ilias Marinos, Robert N.M. Watson, Mark Handley, and Randall R.
Stewart. Disk|Crypt|Net: Rethinking the stack for high-performance
video streaming. In ACM SIGCOMM Conference on Applications
Technologies Architecture and Protocols for Computer
Communications, pages 211–224, 2017.
https://doi.org/10.1145/3098822.3098844.

[13] Ilias Marinos, Robert N.M. Watson, and Mark Handley. Network stack
specialization for performance. In ACM SIGCOMM Conference on
Applications Technologies Architecture and Protocols for Computer
Communications, pages 175–186, 2014.
http://doi.acm.org/10.1145/2619239.2626311.

[14] Joan Daemen and Vincent Rijmen. The design of Rijndael: AES-the
advanced encryption standard. Springer Science & Business Media,
2013.

[15] Shay Gueron. Intel advanced encryption standard instructions
(AES-NI). Intel White Paper, 2010. https://www.intel.com/
content/dam/doc/white-paper/advanced-encryptio
n-standard-new-instructions-set-paper.pdf.

[16] D. Eastlake 3rd and P. Jones. US secure hash algorithm 1 (SHA1).
RFC 3174, Internet Engineering Task Force, September 2001.
http://www.rfc-editor.org/rfc/rfc3174.txt.

[17] Sean Gulley, Vinodh Gopal, Kirk Yap, Wajdi Feghali, J Guilford, and
Gil Wolrich. Intel sha extensions. Intel White Paper, 2013.
https://software.intel.com/content/dam/develop
/external/us/en/documents/intel-sha-extension
s-white-paper-402097.pdf.

[18] D. Sheinwald, J. Satran, P. Thaler, and V. Cavanna. Internet protocol
small computer system interface (iSCSI) cyclic redundancy check
(CRC)/Checksum considerations. RFC 3385, Internet Engineering
Task Force, September 2002.
http://www.rfc-editor.org/rfc/rfc3385.txt.

[19] Vinodh Gopal, J Guilford, E Ozturk, G Wolrich, W Feghali, J Dixon,
and D Karakoyunlu. Fast CRC computation for iSCSI polynomial
using CRC32 instruction. Intel Corporation, 2011.

https://www.intel.com/content/dam/www/public/u
s/en/documents/white-papers/crc-iscsi-polynom
ial-crc32-instruction-paper.pdf.

[20] Younghwan Go, Muhammad Asim Jamshed, YoungGyoun Moon,
Changho Hwang, and KyoungSoo Park. APUNet: Revitalizing GPU as
packet processing accelerator. In USENIX Symposium on Networked
Systems Design and Implementation (NSDI), pages 83–96, 2017.
https://www.usenix.org/conference/nsdi17/tech
nical-sessions/presentation/go.

[21] Xiaokang Hu, Changzheng Wei, Jian Li, Brian Will, Ping Yu, Lu Gong,
and Haibing Guan. QTLS: High-performance TLS asynchronous
offload framework with intel quickassist technology. In ACM
Symposium on Principals and Practice of Parallel Programming
(PPoPP), pages 158–172, 2019.
http://doi.acm.org/10.1145/3293883.3295705.

[22] Muhammad Shoaib Bin Altaf and David A. Wood. Logca: A
high-level performance model for hardware accelerators. In ACM
International Symposium on Computer Architecture (ISCA), pages
375–388, 2017.
https://doi.org/10.1145/3079856.3080216.

[23] Alexander Duyck. Segmentation offloads.
https://www.kernel.org/doc/html/latest/network
ing/segmentation-offloads.html, 2016. Accessed:
2020-03-24.

[24] Overview of receive segment coalescing. https://docs.micro
soft.com/en-us/windows-hardware/drivers/networ
k/overview-of-receive-segment-coalescing, 2017.
Accessed: January 2020.

[25] Edward Cree. Checksum offloads.
https://www.kernel.org/doc/html/latest/network
ing/checksum-offloads.html, 2016. Accessed: 2020-03-24.

[26] Chelsio Communications. Chelsio cryptographic offload and
acceleration solution overview.
https://www.chelsio.com/crypto-solution/, 2018.
Accessed: 2018-12-13.

[27] Zsolt István, David Sidler, Gustavo Alonso, and Marko Vukolic.
Consensus in a box: Inexpensive coordination in hardware. In USENIX
Symposium on Networked Systems Design and Implementation (NSDI),
pages 425–438, 2016.
https://www.usenix.org/conference/nsdi16/tech
nical-sessions/presentation/istvan.

[28] Zsolt István, David Sidler, and Gustavo Alonso. Caribou: Intelligent
distributed storage. Proceedings of the VLDB Endowment, pages
1202–1213, 2017.
https://doi.org/10.14778/3137628.3137632.

[29] Haggai Eran, Lior Zeno, Maroun Tork, Gabi Malka, and Mark
Silberstein. NICA: An infrastructure for inline acceleration of network
applications. In USENIX Annual Technical Conference (ATC), pages
345–362, 2019. https://www.usenix.org/conference/
atc19/presentation/eran.

[30] Jeffrey C Mogul. TCP offload is a dumb idea whose time has come. In
USENIX Workshop on Hot Topics in Operating Systems (HOTOS),
pages 25–30, 2003.
https://www.usenix.org/conference/hotos-ix/tc
p-offload-dumb-idea-whose-time-has-come.

[31] Steven Pope and David Riddoch. 10Gb/s Ethernet performance and
retrospective. SIGCOMM Comput. Commun. Rev., 37(2):89–92, March
2007. https://doi.org/10.1145/1232919.1232930.

[32] RedHat. SegmentSmack and FragmentSmack: IP fragments and TCP
segments with random offsets may cause a remote denial of service.
https://access.redhat.com/articles/3553061, 2019.
Accessed: 2020-08-07.

[33] JSOF research lab. Ripple20: 19 zero-day vulnerabilities amplified by
the supply chain.
https://www.jsof-tech.com/ripple20/, 2019. Accessed:
2020-08-07.

[34] Linux Foundation. Why Linux engineers currently feel that TOE has
little merit. https:
//wiki.linuxfoundation.org/networking/toe, 2016.
Accessed: 2018-11-06.

[35] Linux and TCP offload engines.
https://lwn.net/Articles/148697/, 2005. Accessed:
2018-11-06.

[36] Microsoft. Why are we deprecating network performance features
(kb4014193)? https://techcommunity.microsoft.com/

3

https://rfc-editor.org/rfc/rfc5246.txt
https://rfc-editor.org/rfc/rfc8446.txt
https://nvmexpress.org/wp-content/uploads/NVM-Express-over-Fabrics-1.0-Ratified-TPs.zip
https://nvmexpress.org/wp-content/uploads/NVM-Express-over-Fabrics-1.0-Ratified-TPs.zip
https://thrift.apache.org/static/files/thrift-20070401.pdf
https://thrift.apache.org/static/files/thrift-20070401.pdf
https://grpc.io/
http://dl.acm.org/citation.cfm?id=1012889.1012894
http://dl.acm.org/citation.cfm?id=1012889.1012894
https://www.mongodb.com/
https://doi.org/10.1145/2872887.2750392
https://www.usenix.org/conference/nsdi20/presentation/hwang
https://www.usenix.org/conference/nsdi20/presentation/hwang
https://lwn.net/Articles/772556/
https://lwn.net/Articles/725721/
https://doi.org/10.1145/3098822.3098844
http://doi.acm.org/10.1145/2619239.2626311
https://www.intel.com/content/dam/doc/white-paper/advanced-encryption-standard-new-instructions-set-paper.pdf
https://www.intel.com/content/dam/doc/white-paper/advanced-encryption-standard-new-instructions-set-paper.pdf
https://www.intel.com/content/dam/doc/white-paper/advanced-encryption-standard-new-instructions-set-paper.pdf
http://www.rfc-editor.org/rfc/rfc3174.txt
https://software.intel.com/content/dam/develop/external/us/en/documents/intel-sha-extensions-white-paper-402097.pdf
https://software.intel.com/content/dam/develop/external/us/en/documents/intel-sha-extensions-white-paper-402097.pdf
https://software.intel.com/content/dam/develop/external/us/en/documents/intel-sha-extensions-white-paper-402097.pdf
http://www.rfc-editor.org/rfc/rfc3385.txt
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/crc-iscsi-polynomial-crc32-instruction-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/crc-iscsi-polynomial-crc32-instruction-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/crc-iscsi-polynomial-crc32-instruction-paper.pdf
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/go
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/go
http://doi.acm.org/10.1145/3293883.3295705
https://doi.org/10.1145/3079856.3080216
https://www.kernel.org/doc/html/latest/networking/segmentation-offloads.html
https://www.kernel.org/doc/html/latest/networking/segmentation-offloads.html
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/overview-of-receive-segment-coalescing
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/overview-of-receive-segment-coalescing
https://docs.microsoft.com/en-us/windows-hardware/drivers/network/overview-of-receive-segment-coalescing
https://www.kernel.org/doc/html/latest/networking/checksum-offloads.html
https://www.kernel.org/doc/html/latest/networking/checksum-offloads.html
https://www.chelsio.com/crypto-solution/
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/istvan
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/istvan
https://doi.org/10.14778/3137628.3137632
https://www.usenix.org/conference/atc19/presentation/eran
https://www.usenix.org/conference/atc19/presentation/eran
https://www.usenix.org/conference/hotos-ix/tcp-offload-dumb-idea-whose-time-has-come
https://www.usenix.org/conference/hotos-ix/tcp-offload-dumb-idea-whose-time-has-come
https://doi.org/10.1145/1232919.1232930
https://access.redhat.com/articles/3553061
https://www.jsof-tech.com/ripple20/
https://wiki.linuxfoundation.org/networking/toe
https://wiki.linuxfoundation.org/networking/toe
https://lwn.net/Articles/148697/
https://techcommunity.microsoft.com/t5/Core-Infrastructure-and-Security/Why-Are-We-Deprecating-Network-Performance-Features-KB4014193/ba-p/259053

t5/Core-Infrastructure-and-Security/Why-Are-W
e-Deprecating-Network-Performance-Features-K
B4014193/ba-p/259053, 2017. Accessed: 2019-08-30.

[37] Mellanox. ConnectX®-6 Dx En Card. https://www.mellanox
.com/sites/default/files/related-docs/prod_ada
pter_cards/PB_ConnectX-6_Dx_EN_Card.pdf, 2020.

[38] Ajay Tirumala, Feng Qin, Jon Dugan, Jim Ferguson, and Kevin Gibbs.
Iperf: The tcp/udp bandwidth measurement tool. dast. nlanr.
net/Projects, page 38, 2005. https://iperf.fr/.

[39] Jens Axboe. Fio-flexible io tester.
http://freecode.com/projects/fio, 2014.

[40] Will Reese. Nginx: The high-performance web server and reverse
proxy. Linux J., 2008(173), September 2008.

[41] Intel. Optimize redis with nextgen nvm.
https://www.snia.org/sites/default/files/SDC
/2018/presentations/PM/Shu_Kevin_Optimize_Redi
s_with_NextGen_NVM.pdf, 2018.

[42] Intel. Accelerating redis with intel dc persistent memory.
https://ci.spdk.io/download/2019-summit-prc
/02_Presentation_13_Accelerating_Redis_with_In
tel_Optane_DC_Persistent_Memory_Dennis.pdf, 2019.

4

https://techcommunity.microsoft.com/t5/Core-Infrastructure-and-Security/Why-Are-We-Deprecating-Network-Performance-Features-KB4014193/ba-p/259053
https://techcommunity.microsoft.com/t5/Core-Infrastructure-and-Security/Why-Are-We-Deprecating-Network-Performance-Features-KB4014193/ba-p/259053
https://techcommunity.microsoft.com/t5/Core-Infrastructure-and-Security/Why-Are-We-Deprecating-Network-Performance-Features-KB4014193/ba-p/259053
https://www.mellanox.com/sites/default/files/related-docs/prod_adapter_cards/PB_ConnectX-6_Dx_EN_Card.pdf
https://www.mellanox.com/sites/default/files/related-docs/prod_adapter_cards/PB_ConnectX-6_Dx_EN_Card.pdf
https://www.mellanox.com/sites/default/files/related-docs/prod_adapter_cards/PB_ConnectX-6_Dx_EN_Card.pdf
https://iperf.fr/
http://freecode.com/projects/fio
https://www.snia.org/sites/default/files/SDC/2018/presentations/PM/Shu_Kevin_Optimize_Redis_with_NextGen_NVM.pdf
https://www.snia.org/sites/default/files/SDC/2018/presentations/PM/Shu_Kevin_Optimize_Redis_with_NextGen_NVM.pdf
https://www.snia.org/sites/default/files/SDC/2018/presentations/PM/Shu_Kevin_Optimize_Redis_with_NextGen_NVM.pdf
https://ci.spdk.io/download/2019-summit-prc/02_Presentation_13_Accelerating_Redis_with_Intel_Optane_DC_Persistent_Memory_Dennis.pdf
https://ci.spdk.io/download/2019-summit-prc/02_Presentation_13_Accelerating_Redis_with_Intel_Optane_DC_Persistent_Memory_Dennis.pdf
https://ci.spdk.io/download/2019-summit-prc/02_Presentation_13_Accelerating_Redis_with_Intel_Optane_DC_Persistent_Memory_Dennis.pdf

	Motivation
	Limitations of the State of the Art
	Key Insights
	Main Artifacts
	Key Results and Contributions

