
Judging a Type by its Pointer: Optimizing Virtual Function Calls on
GPUs

Mengchi Zhang, Ahmad Alawneh, Timothy G. Rogers
School of Electrical and Computer Engineering, Purdue University

1. Motivation

The programmability of parallel accelerators is a major bar-
rier to their general adoption. Modern, complex software
relies heavily on reusable, object-oriented frameworks that use
inheritance and virtual functions. Although programming ex-
tensions like CUDA [2], OpenCL [17] and OpenACC [1] have
expanded the subset of C++ supported on GPUs, efficiently
executing object-oriented code still requires significant porting
effort for both functionality and performance. To alleviate the
functionality problem, we propose the first CPU/GPU alloca-
tor that enables objects with virtual functions to be allocated
on the CPU then used on the GPU without programmer inter-
vention. Using both our new allocator and legacy techniques,
we perform the first study of virtual function calls and dynamic
dispatch on GPUs, identifying a different set of bottlenecks
than observed on CPUs. Decades of work on runtime systems,
compilers and architectures for CPUs have improved the exe-
cution of object-oriented applications enough to make them
commonplace [4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 18, 23, 24]. We
seek to do the same for GPUs.

Figure 1 demonstrates the motivation for a novel solu-
tion on GPUs. Figure 1 illustrates the implementation and
added latency of calling a virtual function, known as the direct
cost [11], using CUDA. Similar to C++ implementations on
CPUs, CUDA implements virtual functions by storing a vir-
tual table (vTable) for each type that contains virtual function
(vFunc) pointers. Each concrete object instance contains a
pointer to its vTable. When calling a virtual function, a pointer
to the vTable is loaded A , then the table is accessed to obtain
the virtual function pointer B . Finally, an indirect branch is
called using the address loaded from the table C . Figure 1b
plots a breakdown of the latency added by each of these instruc-
tions using PC sampling on GPU-enabled implementations
of object-oriented applications [19, 20, 21, 22] on an NVIDIA
V100. 87% of the direct cost comes from the load to the vTable
pointer A . Since each object has a private copy of its vTable
pointer, if each thread is accessing a different object, the load
at A will be diverged, generating a request to a different
memory location from each thread. However, since the many
objects being accessed come from a much smaller number of
types, many threads will ultimately access the same vTable,
resulting in coalesced memory accesses and more cache hits
for B . If the vTable pointer load can be avoided, most of the
direct cost from calling virtual functions can be eliminated as

A Object

vTable*
vFunc* vFunc* …

Virtual Function Table 
Type A

vFunc* vFunc* …

A Object

vTable*

B Object

vTable*

LDG R1, [vTable*]
LDG R2, [R1 + vFuncOffset]
CALL [R2]

A
A

BB
A

B
A

B
Virtual Function Table 

Type B C

(a) Global memory and branch instructions involved in the CUDA implementation of
dynamic dispatch for virtual functions.

0%

50%

100%

Average Over Object-Oriented Apps

Pe
rc

en
t l

at
en

cy
 

ad
de

d

Indirect Call
Load vFunc*
Load vTable*A

B

C

(b) Breakdown of the average virtual function call overhead across object-oriented
GPU apps, described in Section 7 of the full paper, executing on an NVIDIA V100.

Figure 1: Direct cost of virtual function calls in GPUs.

well. To address this issue, we propose two novel, comple-
mentary techniques, one implemented completely in software:
Coordinated Object Allocation and function Lookup (COAL)
and one that requires a small hardware change: TypePointer.
Both techniques remove the need to dereference an object’s
pointer to call its virtual functions.

2. Limitations of the State of the Art

State of the Art solutions for object-oriented programming on
GPUs have several limitations. From a performance stand-
point, no prior work has identified the bottlenecks of dynamic
dispatch on GPUs. The closest work to our own is Intel’s
Concord [3], which adds virtual function call functionality to
heterogeneous CPU/GPU objects in a machine with shared
physical memory and a GPU that cannot perform indirect
jumps. Instead of using vTables and function pointers to im-
plement virtual functions, Concord embeds a type field within
the object and uses a statically compiled switch statement
to select the appropriate function implementation. Neither
Concord nor contemporary CUDA implementations of virtual
functions avoid the overhead of accessing the object to deter-
mine its type (i.e., the A access in Figure 1). To the best of
our knowledge, we are the first work for either CPUs or GPUs
that performs virtual functions calls without dereferencing the
object. Finally, no existing infrastructure can share objects
with virtual functions between the CPU and a discrete GPU.



Operation State-of-the-art:
CUDA

Software Only:
COAL

Hardware Support:
TypePointer

A Get vTable* Acc ∝ NumOb jects Acc ∝ NumTypes 0 Acc
B Get vFunc* Acc ∝ NumTypes Acc ∝ NumTypes Acc ∝ NumTypes
C Call vFunc* Indirect Branch Indirect Branch Indirect Branch

Table 1: Overhead of calling virtual functions in prior work and
our proposed techniques. Acc=Number global accesses.

3. Key Insights

• We should rethink virtual function implementations for
GPUs, which we demonstrate have fundamentally differ-
ent bottlenecks than CPUs. GPUs primarily suffer from the
additional memory traffic caused by performing thousands
of virtual function calls in parallel.

• Using two novel techniques, the direct overhead of virtual
function calls on GPUs is greatly reduced by determining an
object’s vTable location based only on the object’s address.

4. Main Artifacts

This paper presents two novel techniques, one implemented
in software only, COAL, and one that requires minimal hard-
ware support, TypePointer. Both techniques reduce the num-
ber of memory accesses required to call virtual functions on
GPUs. Table 1 details the three abstract actions that hap-
pen when a virtual function is called and enumerates the
number of global memory accesses required for the base-
line and our proposed solutions. CUDA accesses each object
instance to obtain the object’s vTable*, meaning that mem-
ory accesses are proportional to the number of accessed ob-
jects. In both our solutions, the vTable* is obtained without
dereferencing the object pointer. COAL modifies the mem-
ory allocator to allocate objects of the same type in contigu-
ous address ranges. Next, a software lookup function ob-
tains the object’s vTable* without accessing individual objects
by testing the object pointer against all the allocated ranges.
The lookup operation still generates memory accesses; how-
ever, memory accesses are now proportional to the number
of types in the program, not the number of objects. Gener-
ally, NumOb jectInstances >> NumOb jectTypes, which re-
sults in less memory pressure using COAL. More importantly,
there is significant reuse in the lookup function, where each
thread walks a small, centralized data structure, regardless of
which object it is accessing. In contrast, CUDA accesses thou-
sands of discrete objects spread throughout memory to obtain
their type. TypePointer is a more efficient, alternative solution
to COAL that requires a small change to the compiler, allocator
and hardware. Using a much smaller allocator change than
COAL, TypePointer makes use of extra bits in the 64-bit object
pointer (GPU unified memory uses a 49-bit virtual address
space) to embed object type information inside the pointer
to the object when it is allocated. TypePointer then uses a
simple sequence of shift and mask instructions to obtain the
object’s vTable* without accessing main memory. TypePointer
requires a small change to the GPU’s Memory Management

1.23
1.72 1.85

0
0.5

1
1.5

2
2.5

3

TR
AF

G
O

L

ST
U

T

G
EN BF

S CC PR BF
S CC PR

Dynasoar GraphChi-vE GraphChi-vEN RAY GM

N
or

m
. P

er
f. 

on
si

lic
on

CUDA Concord COAL TypePointer

Figure 2: Performance, normalized to CUDA on a silicon V100
GPU, averaged over 10 runs (error-bars=max and min).

Unit (MMU) to ignore the unused bits in the virtual address.
We implement both COAL and TypePointer using CUDA

10.1 and PTX compiler transformations. We evaluate both
techniques on real hardware (an NVIDIA Volta V100), as well
as in simulation (using NVIDIA SASS-based Accel-Sim [16])
over a collection of highly parallel object-oriented applications.
To get the most reliable performance numbers, we evaluate
TypePointer (which requires hardware changes) in real silicon
by developing a prototype based on observed patterns in the
unified memory allocator. This implementation is described in
detail in the full paper’s Section 6.2. A novel memory alloca-
tion infrastructure that enables objects with virtual functions
to be shared between the CPU and GPU is also introduced.

5. Key Results

Figure 2 plots the performance improvement of COAL (72%)
and TypePointer (85%) over State of the Art virtual function
call implementations and memory allocators on a silicon V100
GPU. By reducing the number of expensive global memory
accesses, both COAL and TypePointer can outperform a con-
temporary CUDA implementation of virtual functions as well
as proposed work from Intel Concord [3], both of which access
individual objects to obtain their type information.

6. Why ASPLOS

This paper touches on elements of memory allocation (operat-
ing systems), programming languages (compilers and object-
oriented language implementation), and architecture (MMU
modifications to enable TypePointer). Optimizing the per-
formance of productive programming language constructs on
accelerators is a relatively new topic, encouraged by ASPLOS.

7. Citation for Most Influential Paper Award

For pioneering work on decreasing the effort to make use of
massively parallel accelerators with contemporary, produc-
tive programming techniques. By carefully identifying the
key bottleneck in massively parallel virtual function calling,
COAL and TypePointer are the first mechanisms to perform
runtime virtual functions calls without dereferencing an ob-
ject’s pointer. Judging a Type by its Pointer has enabled new
classes of workloads to take advantage of parallel acceleration.

2



References
[1] OpenAcc. https://www.openacc.org/, 2019. Accessed April 15,

2019.
[2] NVIDIA CUDA C Programming Guide. https://docs.nvidia.

com/cu-da/cuda-c-programming-guide/index.html, 2020.
Accessed August 6, 2020.

[3] Rajkishore Barik, Rashid Kaleem, Deepak Majeti, Brian T. Lewis, Ta-
tiana Shpeisman, Chunling Hu, Yang Ni, and Ali-Reza Adl-Tabatabai.
Efficient Mapping of Irregular C++ Applications to Intergrated GPUs.
In International Symposium on Code Generation and Optimization
(CGO), pages 33–43, Feb. 2014.

[4] Brad Calder and Dirk Grunwald. Reducing Indirect Function Call
Overhead in C++ Programs. In Proceedings of the ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL),
pages 397–408, 1994.

[5] Brad Calder and Dirk Grunwald. Reducing indirect function call
overhead in c++ programs. In Proceedings of the ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL),
1994.

[6] C. Chambers, D. Ungar, and E. Lee. An Efficient Implementation of
SELF a Dynamically-typed Object-oriented Language Based on Proto-
types. In Conference Proceedings on Object-oriented Programming
Systems, Languages and Applications, pages 49–70, 1989.

[7] Jeffrey Dean, Craig Chambers, and David Grove. Selective Special-
ization for Object-oriented Languages. In Proceedings of the ACM
SIGPLAN 1995 Conference on Programming Language Design and
Implementation, pages 93–102, 1995.

[8] Jeffrey Dean, David Grove, and Craig Chambers. Optimization of
object-oriented programs using static class hierarchy analysis. In
Proceedings of the 9th European Conference on Object-Oriented Pro-
gramming, pages 77–101, 1995.

[9] David Detlefs and Ole Agesen. Inlining of virtual methods. In ECOOP,
1999.

[10] L. Peter Deutsch and Allan M. Schiffman. Efficient Implementation of
the Smalltalk-80 System. In Proceedings of the 11th ACM SIGACT-
SIGPLAN Symposium on Principles of Programming Languages, pages
297–302, 1984.

[11] Karel Driesen and Urs Hölzle. The direct cost of virtual function calls
in c++. In Proceedings of the Object-Oriented Programming, Systems,
Languages and Applications (OOPSLA), 1996.

[12] Izzat El Hajj, Thomas B. Jablin, Dejan Milojicic, and Wen-mei Hwu.
Savi objects: Sharing and virtuality incorporated. In Proceedings of the
Object-Oriented Programming, Systems, Languages and Applications
(OOPSLA), volume 1, pages 45:1–45:24, New York, NY, USA, October
2017. ACM.

[13] Urs Hölzle and David Ungar. Optimizing dynamically-dispatched calls
with run-time type feedback. In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation
(PLDI), 1994.

[14] Jose A. Joao, Onur Mutlu, Hyesoon Kim, Rishi Agarwal, and Yale N.
Patt. Improving the performance of object-oriented languages with
dynamic predication of indirect jumps. In Proceedings of the 13th
International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS XIII, pages 80–90, New
York, NY, USA, 2008. ACM.

[15] John Kalamatianos and David R. Kaeli. Predicting Indirect Branches
via Data Compression. In Proceedings of the International Sympo-
sium on Microarchitecture (MICRO), pages 272–281. IEEE Computer
Society Press, 1998.

[16] Mahmoud Khairy, Zhesheng Shen, Tor M. Aamodt, and Timothy G.
Rogers. Accel-Sim: An Extensible Simulation Framework for Vali-
dated GPU Modeling. In Proceedings of the International Symposium
on Computer Architecture (ISCA). ACM, 2020.

[17] Khronos Group. OpenCL. http://www.khronos.org/opencl/,
2013.

[18] Hyesoon Kim, José A. Joao, Onur Mutlu, Chang Joo Lee, Yale N.
Patt, and Robert Cohn. VPC Prediction: Reducing the Cost of Indirect
Branches via Hardware-based Dynamic Devirtualization. In Proceed-
ings of the International Symposium on Computer Architecture (ISCA),
pages 424–435. ACM, 2007.

[19] Aapo Kyrola. GraphChi-C++. https://github.com/GraphChi/graphchi-
cpp.

[20] Aapo Kyrola. GraphChi-Java. https://github.com/GraphChi/graphchi-
java.

[21] Aapo Kyrola, Guy Blelloch, and Carlos Guestrin. Graphchi: Large-
scale graph computation on just a pc. In Proceedings of the Interna-
tional Conference on Operating Systems Design and Implementation
(OSDI), 2012.

[22] Peter Shirley. Ray Tracing in One Weekend. https://github.com/
petershirley/raytracinginoneweekend, 2018. Accessed Aug
20, 2018.

[23] Vijay Sundaresan, Laurie Hendren, Chrislain Razafimahefa, Raja
Vallée-Rai, Patrick Lam, Etienne Gagnon, and Charles Godin. Prac-
tical virtual method call resolution for java. In Proceedings of the
Object-Oriented Programming, Systems, Languages and Applications
(OOPSLA), 2000.

[24] Olivier Zendra, Dominique Colnet, and Suzanne Collin. Efficient
dynamic dispatch without virtual function tables: The smalleiffel com-
piler. In Proceedings of the Object-Oriented Programming, Systems,
Languages and Applications (OOPSLA), 1997.

3

https://www.openacc.org/
https://docs.nvidia.com/cu-da/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cu-da/cuda-c-programming-guide/index.html
http://www.khronos.org/opencl/
https://github.com/petershirley/raytracinginoneweekend
https://github.com/petershirley/raytracinginoneweekend

	Motivation
	Limitations of the State of the Art
	Key Insights
	Main Artifacts
	Key Results
	Why ASPLOS
	Citation for Most Influential Paper Award

