
Jaaru: Efficiently Model Checking Persistent Memory Programs
Extended Abstract

Hamed Gorjiara
hgorjiar@uci.edu

University of California, Irvine

Guoqing Harry Xu
harryxu@cs.ucla.edu

University of California, Los Angeles

Brian Demsky
bdemsky@uci.edu

University of California, Irvine

1. Motivation

Non-volatile memory technologies such as Intel Optane DC
memory have recently become available. These technologies
provide both near DRAM performance and the persistency
of disks. Persistent memory presents an interface much like
DRAM — programs perform normal load and store instruc-
tions to access persistent storage, bypassing the operating
system to achieve higher performance — and provides a way
for developers to redesign how programs manage data. For
example, persistent memory makes it possible to use a single
copy of a data structure for both a working in-memory copy
of the data structure and as a persistent store for the data. This
eliminates the overheads of serialization and deserialization
and may simplify working with large data sets.

Ensuring crash consistency for persistent memory data struc-
tures is extremely challenging. Stores to persistent memory
do not immediately become persistent — they are first written
to the volatile cache and do not become persistent until their
cache line is flushed to persistent memory. As this can take
an arbitrary amount of time to happen due to cache capacity
constraints, later stores can be made persistent before earlier
stores. To enforce ordering properties as well as that stores
are made persistent in a timely manner, it is necessary to use
special instructions to explicitly flush cache lines, such as
clflush and clflushopt.

Writing correct data structures for persistent memory in
the presence of failures requires developers to carefully rea-
son about the subtle ordering and persistency properties their
code relies upon and to ensure that they enforce those proper-
ties with the appropriate use of flush and fence instructions.
Our experience with persistent memory benchmarks suggests
that it is very easy to make a mistake (e.g., forget to add the
necessary flush instructions).

Testing persistent memory programs is particularly chal-
lenging. Missing cache flush instructions would not become
apparent unless the machine suffers from a failure at a very
specific interval in the execution. Moreover, trying to test
data structures by abruptly cutting power to a machine creates
numerous practical challenges including the risk of corrupting
other programs on the machine.

This paper presents a novel model checker, named Jaaru, to
find bugs in persistent memory programs. Jaaru exhaustively
explores the space of executions from non-determinism due to
cache line persistency without needing any user annotations.
Jaaru is also efficient due to (1) a constraint refinement based

approach for partial order reduction that drastically reduces
the state space to be explored and (2) an effective leverage
of commit stores – a common programming pattern – that
can reduce the number of steps taken from exponential in the
length of a program execution to quadratic.

2. Limitations of the State of the Art
State of the art techniques for finding bugs in persistent mem-
ory programs fall into two primary categories:
Persistency Property Checkers: There is a line of work in-
cluding PMTest [7], PMemcheck [1], and XFDetector [6],
which checks various properties of stores such as persistency
and ordering relative to other stores. These property checkers
require annotating the code to specify the properties to be
checked. Developing annotations is labor-intensive and error-
prone itself; as such, the bug report depends very much on the
quality of annotations — problems with annotations can lead
to both false positives and false negatives. Moreover, these
tools are not exhaustive — they focus on single executions and
hence can miss bugs.
Naïve Model Checking: Model checking has been used ex-
tensively in the system community [5, 8, 9, 10] to find crash
consistency bugs in file system implementations. These tech-
niques are not scalable if applied directly to check persistent
memory programs — persistent memory is byte-addressable
and has many more states than disks that are accessed at the
block granularity through the OS. In fact, there was an ef-
fort [3] from Intel Research that attempts to apply an eager
model checking approach to exhaustively generate all possible
persistent memory states following a failure. The number of
states grows exponentially in the number of unflushed stores
and thus Yat’s approach does not scale.

3. Key Insights
Naïve model checking fails for persistent memory programs
because the number of persistent memory states that must
be explored is exponential in the number of unflushed stores.
Jaaru is built on two major insights, as elaborated below.

First, instructions that explicitly flush a cache line into per-
sistent memory such as clflush and clflushopt set a con-
straint on the time at which a cache line was previously flushed.
Jaaru builds such constraints during a pre-failure execution
and refines them (i.e., make them tighter) during a post-failure
execution using values that are actually read in the post-failure
execution. Jaaru employs a partial-order reduction technique



that explicitly uses these refined constraints to significantly
reduce search space.

Second, Jaaru follows from an important observation that
persistent memory programs often perform a commit write
to indicate that data has been fully persistent and is now in a
consistent state. PM programs typically read from this commit
write first to determine whether the data has been persisted,
and then only read the data if it is known to be persisted.
For example, for a tree data structure, the program may set
the root pointer after it makes sure that all nodes in the tree
have been well persisted (with flush instructions). The post-
failure execution reads the root first and checks if the pointer
is null; a null pointer indicates data inconsistency and hence,
the program would not read the rest of the data any more.

While correct persistent memory programs may have a large
number of unflushed stores when a failure occurs, this observa-
tion indicates that their post-failure executions typically only
read from a small number of such unflushed stores because
the read from this commit store (e.g., the root pointer check)
explicitly precludes accessing unflushed stores that are part of
the data protected by the store.

By leveraging this observation, we develop a lazy explo-
ration technique to explore only pre-failure stores that are
actually read by a post-failure execution. Compared to an ea-
ger model checker that explores all possible states at a failure,
our lazy approach waits until the post-failure code is executed
to do the exploration, and hence exponentially reduces the
executions that must be explored.

Note that leveraging commit stores leads to efficiency, but
has nothing to do with the thoroughness of the search — Jaaru
still exhaustively explores all possible states. For programs
without such commit stores, Jaaru would just need to spend
more time on the exploration.

Putting them all together, Jaaru is able to automatically
explore only a handful of executions per injected crash location
for persistent memory programs.

Relative to previous work on model checking persistent
memory programs, Jaaru reduces the number of executions
that must explored for the RECIPE benchmarks by many or-
ders of magnitude. As a result, Jaaru can in seconds model
check persistent memory programs that would require infeasi-
ble amounts of time for previous algorithms.

Relative to previous work on persistent memory bug finding
tools, Jaaru is exhaustive while existing tools explore only
a single execution or rely on carefully designed test cases.
Jaaru can catch classes of bugs that they will miss. It does not
require any manual effort of writing annotations, avoiding the
issue that errors in annotations may cause bugs to be missed.

4. Main Artifacts
The main artifacts include the implementation of the Jaaru
model checker with an LLVM frontend for instrumenting
C/C++ code and a runtime library that implements the Jaaru
model checker, as well as a set of bugs Jaaru found in well-

studied persistent memory programs. We will make these
artifacts available on Github.

5. Key Results and Contributions
Jaaru is the first practical model checker for persistent mem-
ory programs with full automation and ultra efficiency. Our
contributions include:
• A novel partial order reduction algorithm that leverages

the two ideas presented above – (1) constraint refinement
and (2) commit stores – to scale to real persistent memory
programs. These new ideas enable our model checker to
be many orders of magnitude more efficient than previous
exhaustive approaches;

• An implementation of Jaaru that fully supports the TSO
memory model;

• An evaluation of the approach with PMDK [2] and
RECIPE [4] that found bugs in every single program in
our benchmark set with a total of 11 programs.

Usage Scenarios. Despite the aforementioned advantages,
model checking is not a silver bullet for bug finding in PM
programs. For example, even if Jaaru is orders of magnitude
more efficient than existing model checkers such as Yat, Jaaru
needs to execute a program many times to fully explore the
state space, taking a large amount of time for checking. Com-
pared to testing tools such as PMTest and XFDetector, Jaaru
is able to find more bugs, in a completely automated fashion,
but has difficulties checking programs such as Redis that inter-
act with the outside world and whose non-determinism from
the network would require deterministic replay for a model
checker to work. As such, the best use case for Jaaru is to
exhaustively check widely-used libraries such as PMDK, find-
ing as many potential bugs as possible before their release,
while non-exhaustive tools such as PMTest and XFDetector
can scalably check large programs and find bugs only when
they are triggered by tests.

6. Summary
Jaaru shows how to scale model checking of persistent memory
programs to find errors in wide range of persistent memory
data structures and programs. The partial order reduction
techniques introduced in this paper improve the efficiency of
model checking by many orders of magnitude to optimize a
technique that was previously completely infeasible for persis-
tent memory programs so that it can finish in seconds for code
that accesses persistent memory.

References
[1] An introduction to pmemcheck (part 1) - basics. https://pmem.io/

2015/07/17/pmemcheck-basic.html, July 2015.
[2] Intel Corporation. Persistent memory development kit.

https://pmem.io/pmdk/, 2020.
[3] Philip Lantz, Subramanya Dulloor, Sanjay Kumar, Rajesh Sankaran,

and Jeff Jackson. Yat: A validation framework for persistent mem-
ory software. In Proceedings of the 2014 USENIX Annual Technical
Conference, pages 433–438, Philadelphia, PA, June 2014. USENIX
Association.

2

https://pmem.io/2015/07/17/pmemcheck-basic.html
https://pmem.io/2015/07/17/pmemcheck-basic.html


[4] Se Kwon Lee, Jayashree Mohan, Sanidhya Kashyap, Taesoo Kim,
and Vijay Chidambaram. Recipe: Converting concurrent DRAM
indexes to persistent-memory indexes. In Proceedings of the 27th ACM
Symposium on Operating Systems Principles, SOSP ’19, page 462–477,
New York, NY, USA, 2019. Association for Computing Machinery.

[5] Tanakorn Leesatapornwongsa, Mingzhe Hao, Pallavi Joshi, Jeffrey F.
Lukman, and Haryadi S. Gunawi. Samc: Semantic-aware model check-
ing for fast discovery of deep bugs in cloud systems. In Proceedings
of the 11th USENIX Conference on Operating Systems Design and
Implementation, OSDI’14, page 399–414, USA, 2014. USENIX Asso-
ciation.

[6] Sihang Liu, Korakit Seemakhupt, Yizhou Wei, Thomas Wenisch,
Aasheesh Kolli, and Samira Khan. Cross-failure bug detection in
persistent memory programs. In Proceedings of the Twenty-Fifth In-
ternational Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’20, page 1187–1202,
New York, NY, USA, 2020. Association for Computing Machinery.

[7] Sihang Liu, Yizhou Wei, Jishen Zhao, Aasheesh Kolli, and Samira
Khan. Pmtest: A fast and flexible testing framework for persistent
memory programs. In Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’19, page 411–425, New York, NY, USA,
2019. Association for Computing Machinery.

[8] Jayashree Mohan, Ashlie Martinez, Soujanya Ponnapalli, Pandian Raju,
and Vijay Chidambaram. Finding crash-consistency bugs with bounded
black-box crash testing. In Proceedings of the 13th USENIX Confer-
ence on Operating Systems Design and Implementation, OSDI’18,
page 33–50, 2018.

[9] Junfeng Yang, Can Sar, and Dawson Engler. Explode: A lightweight,
general system for finding serious storage system errors. In Proceed-
ings of the 7th USENIX Symposium on Operating Systems Design and
Implementation - Volume 7, OSDI ’06, page 10, USA, 2006. USENIX
Association.

[10] Junfeng Yang, Paul Twohey, Dawson Engler, and Madanlal Musuvathi.
Using model checking to find serious file system errors. ACM Trans.
Comput. Syst., 24(4):393–423, November 2006.

3


	Motivation
	Limitations of the State of the Art
	Key Insights
	Main Artifacts
	Key Results and Contributions
	Summary

