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1 Motivation
Computer programs written in unsafe languages directly
manipulate memory using unbounded pointers, which may
introduce memory safety bugs [26]. In response, past work
has developed various runtime defenses, including mem-
ory safety checks [24] as well as mitigations like stack ca-
naries [7], no-execute memory [27], and control-flow in-
tegrity [4] (CFI), which validates runtime control-flow transi-
tions against an expected control-flow graph (CFG). However,
these runtime defenses may need to update runtime meta-
data to maximize accuracy, which is difficult to do precisely,
efficiently, and securely.

In this paper, we present an efficient solution by adding a
fast hardware-based append-only inter-process communica-
tion (IPC) primitive, named AppendWrite, which leverages
existing inter-process memory protections. Our approach re-
sembles that of fine-grain instruction monitoring [2, 5, 8, 10],
which modifies the processor to send a log of execution
events elsewhere for analysis, except that we avoid signifi-
cant hardware change, reduce performance overhead, and
maximize flexibility with software-defined events.

2 Past Work
Existing proposals for fine-grained instruction monitoring
have significant drawbacks, as shown in Table 1. All require
significant microarchitectural change to generate, filter, and
process events in hardware, which indicate, e.g., retired in-
structions, function calls, or memory accesses. For example,
Guardian Council [2] adds up to 24 dedicatedmicrocontroller-
sized cores (𝜇Cores) to process events, whereas FlexCore [8]
adds an on-chip FPGA. These designs generate fixed hardware-
defined events, which may not be used by all software poli-
cies, yet nevertheless incur both energy and logic costs. For
example, under FADE [10], hardware must ultimately filter
and discard 84%–99% of all events as irrelevant.
Although Processor Trace [1] (PT) is included by many

Intel processors, it is designed for performance monitoring,
and not as a security mechanism. Event packets can be lost or
overwritten due to, e.g., interrupt skid, which defeats security.
PT incurs tremendous overhead and has limited support for
software-defined events via the PTWRITE instruction. Past
PT-based CFI approaches [9, 11, 13, 20] have measured over
500x overhead [20] for tracing/decoding hardware-defined
events on the SPEC benchmarks; as a result, they limit CFI

Design Events Recip. Paradigm HW Δ
FADE [10] HW/SW Core Filter-Update Big
FlexCore [8] HW/SW FPGA Reconfigure Big
Guardian Council [2] HW/SW 𝜇Cores Filter-Map-Red. Big
LBA [5] HW/SW Core Filter-Update Big
Processor Trace [1] HW/SW Mem. Filter-Update –
HerQules SW Core Message Passing Small

Table 1. Comparison of fine-grained instruction monitoring.

checks to 7-10 system calls (e.g. execve, mmap, etc.), which
are rarely called by compute-heavy benchmarks like SPEC.

3 Key Insights
We introduce a simple AppendWrite IPC primitive that pro-
vides both authentication and integrity security properties
for messages transmitted from a monitored program to a
verifier process. Using our AppendWrite primitive, we build
HerQules, a framework for efficiently enforcing program
integrity, as shown in Figure 1. Our approach uses compiler
instrumentation to insert runtime AppendWrite calls into
the instrumented program (1a), which transmit software-
defined policy events to the verifier (2a, 2b, 3a). Since the
instrumented program begins execution in a benign state,
and its code is read-only, it must send a message containing
evidence of a policy violation before it occurs. Even if the pro-
gram is later compromised, AppendWrite ensures that this
evidence cannot be retracted. We maximize performance by
executing the verifier concurrently with the instrumented
program, and synchronize only at the program’s system
calls (3b). To prevent externally-visible side effects from a
corrupted program, we employ bounded validation; i.e. we
use a kernel module to pause execution of the instrumented
program until the verifier confirms that no policy checks
have failed (4a, 4b).

Using HerQules, we develop various security policies, in-
cluding HQ-CFI, a state-of-the-art pointer integrity [15, 21]
CFI design, as well as others for, e.g., memory safety. Our
HQ-CFI design supplements pointer integrity with invalida-
tion to detect use-after-free bugs (UAF), which is not sup-
ported by past work and infeasible under approaches such
as cryptographic MACs [21], and we evaluate its correctness,
effectiveness, and performance against related work.
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Figure 1. Runtime overview of HerQules, showing inter-
actions between the instrumented program, AppendWrite

primitive, kernel module, and verifier for the HQ-CFI policy.

4 Main Artifacts
We develop two designs for AppendWrite: one in an FPGA-
based PCIe programmable accelerator [17, 22], named Ap-
pendWrite-FPGA, and another in the microarchitecture
itself, named AppendWrite-µarch. Our accelerator-based
design is compatible with existing systems, synthesizes a sim-
ple append-only message queue from programmable logic,
and accepts messages from memory-mapped I/O writes. Our
microarchitectural design extends each processor core to
support an appendable memory region by introducing two
new privileged registers, one new instruction to the ISA, and
some additional logic to TLB lookups. In comparison to our
FPGA-based design, it reduces overhead by decreasing round-
trip time and leveraging existing hardware mechanisms for
caching and out-of-order execution.
We implement HerQules, our framework for integrity-

based security policies, which we have made available online
as open-source software1. It is composed of four different
components: our AppendWrite primitive, compiler instru-
mentation passes, a runtime policy verifier, and a kernel
module. We evaluate our pointer integrity design, HQ-CFI,
on a suite of benchmark programs, including RIPE [23, 28],
SPEC CPU2006 [14], SPEC CPU2017 [3], and NGINX [25].

5 Key Results and Contributions
As a micro-benchmark, we compare the security and perfor-
mance of various IPC primitives to AppendWrite in Table 2,
and demonstrate that only AppendWrite ensures append-
only messages with high performance. Software-based prim-
itives either lack performance (not asynchronous) or mes-
sage integrity (not append-only). System calls execute syn-
chronously on the calling thread, and incur a privilege tran-
sition that flushes hardware caches, especially after recent

1
https://github.com/secure-foundations/herqules

IPC Primitive Append
Only Async. Cost Time (ns)

Message Queue ✓ ✕ System Call 146
Named Pipe ✓ ✕ System Call 316

Socket ✓ ✕ System Call 346
Shared Memory ✕ ✓ Mem. Write 12

Light-Weight Contexts ✓ ✕ System Call 2010 [19]
AppendWrite-FPGA ✓ ✓ Mem. Write 102
AppendWrite-𝜇arch ✓ ✓ Mem. Write 2

Table 2. Comparison of measured IPC primitives, by type
(top: software, center : hardware, bottom: proposed).

Design Errors False Ps. Invalid Ok
Baseline 0 0 0 48

Clang/LLVM CFI [6] 0 15 0 33
CCFI [21] 12 29 9 19
CPI [15, 16] 14 0 14 34
HQ-CFI 0 0 0 48

Table 3. Correctness of evaluated control-flow integrity de-
signs, by possibly non-exclusive category.

Design Mechanism Prec. UAF Compat. Perf.
Clang/LLVM CFI [6] Language-level Types • ✕ •• 94%

CCFI [21] Cryptographic MACs • • • ✕ • 49%
CPI [16] Software Fault Isolation •• ✕ • 96%

HQ-CFI-SfeStk-Model AppendWrite •• ✓ • • • 87%
HQ-CFI-RetPtr-Model AppendWrite • • • ✓ • • • 55%

Table 4. Comparison of evaluated control-flow integrity
designs, by precision (top: low, center/bottom: high). More •
is better.

kernel page-table isolation [12] mitigations for microarchi-
tectural side channels [18]. Traditional workarounds, like
client-side buffering, would violate message integrity by al-
lowing alteration or erasure of in-flight messages.
We evaluate two variants of our HQ-CFI design, both

of which achieve superior precision, benchmark correct-
ness, and runtime performance when compared to past work.
On the RIPE testsuite of buffer overflow exploits, HQ-CFI-
RetPtr checks all stack return pointers, rendering it invul-
nerable to all exploits, whereasHQ-CFI-SfeStk uses a safe
stack [15] that relies on information hiding, trading-off pre-
cision for performance. Both detect use-after-frees, which
allowed us to identify and fix undetected memory safety
bugs in the SPEC benchmarks.

Our designs do not affect benchmark correctness, as shown
in Table 3, whereas past works cause crashes/hangs (errors),
emit false positives (false Ps.), and generate incorrect out-
put (invalid), which we attempted to manually fix in their
implementations. In Table 4, we quantify performance by
computing a baseline-relative geometric mean across our
SPEC CPU2006, SPEC CPU2017, and NGINX benchmarks,
and use a software-only model for AppendWrite-𝜇arch as a
lower-bound estimate. Our design is compatible with exist-
ing libraries, and does not require masking of all pointers.

https://github.com/secure-foundations/herqules
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