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1. Motivation

Production software is often optimized by compilers, which
use sophisticated optimization techniques to improve several
aspects of the produced artifacts (e.g., speed, size, energy
consumption [19], etc.). While these optimizations are fun-
damental to ensure the final binary performance, it is well
known that they may expose bugs that are observable only in
the optimized case (e.g., race conditions [9], use-after-free [5],
and other classes of heisenbugs [25]). Hence, there is often
a need for debugging the exact same version of the binary
running in production to triage issues that are otherwise not
reproducible. A complete and reliable debugging experience
for optimized binaries [6] is thus crucial for post-deployment
triaging efforts.

Note that a reliable debugging experience not only requires
the debugger to behave correctly, but it also depends on the
compiler’s ability to produce precise debug information. In
other words, the entire toolchain has to be bug-free. However,
preserving debug information for optimized production bina-
ries is a daunting task. There is no obvious mapping between
source and assembly statements [6] and there is potential to in-
troduce bugs at each of the several layers of modern toolchains.
As we will show, even efforts to provide debug-friendly opti-
mization levels (such as -Og in modern compilers) fall short
of providing a bug-free debugging experience.

Therefore, it is crucial to analyze the entire debug informa-
tion lifecycle and look for bugs that could negatively impact
the debugging experience.

A motivating example — Snippet | shows a bug we ex-
posed with our framework in LLVM when compiling with
-Og.

The bug is observable '

. . 2 int a, b, c;

as an incorrect line step- ; int main()
ping in the debugger, but * { , .
.. . 5 {int uil = 5, ui2 = b;
it is a compiler bug. More s =
precisely, while stepping, w2 == 0 ¥
the debugger points to a , L(lil:/ ui2) ;
source line that is dead " !
code: in this case, it points u
to line 8, which does not
get executed, instead of
line 7 (note that variables a, b, ¢ are static and initialized
to 0). This and similar bugs significantly degrade the de-
bugging experience by showing misleading execution flows.
Since source line stepping is a staple of debugging and other

Snippet 1: Clang bug, wrong
step at line 8 (-Og)

tools (e.g., profilers), the example highlights the need for more
rigorous testing of debug information for optimized code.

As a matter of fact, such a bug is an instance of a more
general class of bugs in which transformation passes move
instructions across the control flow graph blocks without a
proper update of the associated debug information. In this
particular example, the branch folding pass (which is respon-
sible for optimizing the control flow) does not preserve the
correct line information. In this work, we found several other
problems in passes that perform similar transformations (e.g.,
passes that perform simplifications of the control flow graph
and passes moving invariants instructions outside of a loop).

2. Limitations of the State of the Art

Surprisingly, testing the debug lifecycle of optimized binaries
has been mostly neglected (despite much prior work on com-
piler testing, for a survey see [3]). The majority of the efforts
[6, 23, 7, 8, 20] studying the debugging of optimized binaries
focused on generating debug information or creating debug-
ging strategies without looking at the correctness of real-world
production toolchains.

Some efforts have focused on debugger testing [21, 14], but
these solutions cannot find bugs in other parts of the toolchain
(e.g., the compiler).

Most related to our work is a recent work by Yuanbo Li et
al. [15]. The paper focuses on assessing the correctness of
the variables’ values shown by a debugger for optimized code
of statically compiled languages, but does not consider other
classes of bugs (e.g., line information bugs). Furthermore, the
authors assume that source-line stepping is correct, which, as
shown in our motivating example, is not always true.

3. Key Insights

This paper introduces DEBUG?, a framework to expose debug
information bugs in production toolchains. We tested DEBUG?
on various toolchains, and found several new bugs like the one
presented in the motivating example.

Key insights: our analysis shows that after decades of devel-
opment, mature compiler (e.g., clang and GCC) and debugger
implementations still have a conspicuous amount of bugs that
can be found automatically. Surprisingly, many of these bugs
plague optimization levels specifically created for a smooth
debugging experience (i.e., -0g).

Beyond the state of the art: our framework is much more gen-
eral than previous efforts [15, 21, 14], being able to find sev-



eral classes of bugs in the entire debug lifecycle of optimized
binaries. Specifically, DEBUG? is not limited to discovering
specific bugs in the debugger (as [21, 14]). It relies on generic
cross-toolchain and cross-language invariants to find a rich
family of bugs (differently from [15]) in the entire toolchain,
including wrong source-line stepping and wrong backtraces.

4. Main Artifacts

e We introduce DEBUG? (see Full Paper §2). The frame-
work feeds random source programs to a target toolchain
and performs a differential analysis on the debugging be-
havior of their optimized/unoptimized binaries to expose
bugs. To automatically check for (un)expected behavioral
differences, DEBUG? relies on trace invariants based on the
(in)consistency of common debug elements, such as source
lines, stack frames, and function arguments.

e We introduce four different trace invariants that check dif-
ferent debug information (see Full Paper §3):

The Line Invariant (LI) checks for misstepped lines;

The Backtrace Invariant (BI) checks for spurious frames

in the backtrace of a line;

The Scope Invariant (SI) checks if there are out-of-scope

variables;

The Parameters Invariants (PI) checks the consistency

of the values assumed by function parameters.

o The extensive evaluation presented in the paper positively
answers the following questions (see Full Paper §3):

- Does DEBUG? find real bugs in our reference toolchain
(LLVM) across different optimization levels and compo-
nents (e.g., compiler and debugger)?

- Does DEBUG? generalize to different toolchains and pro-
gramming languages?

e We answered our research questions by evaluating a python
prototype of DEBUG?. In roughly three months, we found
23 bugs on the trunk versions of the LLVM toolchain (from
April to mid-July). Our methodology was able to find sev-
eral violations of our invariants, which we automatically
triaged and manually analyzed to identify bugs (see Full
Paper §5.2). We studied the relationship between invariant
violations and bugs. Our results showed that more than
99% of violations were caused by bugs (see Full Paper
§5.1). We also performed additional experiments to identify
the optimization passes that are more prone to bugs. We
ran similar tests on the GNU toolchain and Rust toolchain
aimed at investigating the generality of DEBUG? across
different toolchains and programming languages (see Full
Paper §5.3).

5. Key Results and Contributions

We make the following key contributions:

e DEBUG?, a framework to scrutinize the debug information
lifecycle for optimized binaries using trace invariants.

e Using DEBUG? on the tested toolchains, we exposed and

reported 23 bugs for the LLVM toolchain (clang and 11db),
8 bugs for the GNU toolchain (GCC and gdb) and 3 bugs
on the Rust toolchain (rustc and lldb). The developers
confirmed 22 bugs, 14 of which have been fixed.

The bugs we reported sparked much discussion among de-
velopers, leading to interesting lessons learned:

e There are no formal guidelines to define how debug infor-
mation should be preserved during optimization passes of
modern toolchains. This led developers to adopt a case-by-
case approach to decide how fix our bugs. Such strategy,
in the long term, is likely to lead to inconsistent behavior.
After reviewing our findings, the LLVM developers pub-
lished a set of basic guidelines to update debug information
during certain optimization passes [12]. This is a concrete
outcome of our effort and a first important step towards
defining shared guidelines.

o We discovered some shortcomings of DWAREF, the de-facto
standard used to encode debug information for UNIX plat-
forms. Notably, DWARF does not provide a way to map a
single address to multiple source locations, making it im-
possible to represent the result of some optimization passes
correctly (e.g., common subexpression elimination).

6. Why ASPLOS

Debugging, reproducing, and triaging bugs are all well-
established and long-studied problems in the systems com-
munity [22, 16, 1, 11, 10, 2]. In previous efforts, the main
focus has been on improving the reproducibility of production
bugs, assuming correct debug information. With DEBUG?,
we show how bugs in real-world toolchains might provide the
developer with invalid debug information, making it impos-
sible to triage or reproduce a particular production bug. In
other words, DEBUG? complements prior work in the systems
community on improving debuggability. At the same time,
DEBUG? makes important contributions to the field of com-
piler/toolchain testing, which is on the critical path of the PL
community [15, 17, 24, 13]. Finally, DEBUG?’s generic bug
detection strategy based on differential invariants draws inspi-
ration from much prior work on invariants-based bug detection
published at ASPLOS (e.g., [18, 4]).

7. Citation for Most Influential Paper Award

This paper introduced DEBUG?, the first framework to scru-
tinize the entire debug information lifecycle for optimized
programs. DEBUG? uses trace invariants to perform differen-
tial analysis on the debug traces produced by optimized and
unoptimized binaries. Invariant violations expose bugs that
affect the debug lifecycle and that may reside in different parts
of the toolchain. DEBUG? helped discover and fix many bugs
affecting widely used toolchains for several years, severely
impacting the debugging experience on production software.
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