Who’s Debugging the Debuggers?
Exposing Debug Information Bugs in Optimized Binaries
Extended Abstract

Giuseppe Antonio Di Luna!, Davide Italiano 2, Luca Massarelli!, Sebastian Osterlund?, Cristiano Giuffrida®, Leonardo Querzoni

1

1: Sapienza, University; 2: Apple; 3: Vrije Universiteit Amsterdam.

1. Motivation

Production software is often optimized by compilers, which
use sophisticated optimization techniques to improve several
aspects of the produced artifacts (e.g., speed, size, energy
consumption [19], etc.). While these optimizations are fun-
damental to ensure the final binary performance, it is well
known that they may expose bugs that are observable only in
the optimized case (e.g., race conditions [9], use-after-free [5],
and other classes of heisenbugs [25]). Hence, there is often
a need for debugging the exact same version of the binary
running in production to triage issues that are otherwise not
reproducible. A complete and reliable debugging experience
for optimized binaries [6] is thus crucial for post-deployment
triaging efforts.

Note that a reliable debugging experience not only requires
the debugger to behave correctly, but it also depends on the
compiler’s ability to produce precise debug information. In
other words, the entire toolchain has to be bug-free. However,
preserving debug information for optimized production bina-
ries is a daunting task. There is no obvious mapping between
source and assembly statements [6] and there is potential to in-
troduce bugs at each of the several layers of modern toolchains.
As we will show, even efforts to provide debug-friendly opti-
mization levels (such as -Og in modern compilers) fall short
of providing a bug-free debugging experience.

Therefore, it is crucial to analyze the entire debug informa-
tion lifecycle and look for bugs that could negatively impact
the debugging experience.

A motivating example — Snippet | shows a bug we ex-
posed with our framework in LLVM when compiling with
-Og.

The bug is observable '

. . 2 int a, b, c;

as an incorrect line step- ; int main()
ping in the debugger, but * { , .
.. . 5 {int uil = 5, ui2 = b;
it is a compiler bug. More s =
precisely, while stepping, w2 == 0 ¥
the debugger points to a , L(lil:/ ui2) ;
source line that is dead " !
code: in this case, it points u
to line 8, which does not
get executed, instead of
line 7 (note that variables a, b, ¢ are static and initialized
to 0). This and similar bugs significantly degrade the de-
bugging experience by showing misleading execution flows.
Since source line stepping is a staple of debugging and other

Snippet 1: Clang bug, wrong
step at line 8 (-Og)

tools (e.g., profilers), the example highlights the need for more
rigorous testing of debug information for optimized code.

As a matter of fact, such a bug is an instance of a more
general class of bugs in which transformation passes move
instructions across the control flow graph blocks without a
proper update of the associated debug information. In this
particular example, the branch folding pass (which is respon-
sible for optimizing the control flow) does not preserve the
correct line information. In this work, we found several other
problems in passes that perform similar transformations (e.g.,
passes that perform simplifications of the control flow graph
and passes moving invariants instructions outside of a loop).

2. Limitations of the State of the Art

Surprisingly, testing the debug lifecycle of optimized binaries
has been mostly neglected (despite much prior work on com-
piler testing, for a survey see [3]). The majority of the efforts
[6, 23, 7, 8, 20] studying the debugging of optimized binaries
focused on generating debug information or creating debug-
ging strategies without looking at the correctness of real-world
production toolchains.

Some efforts have focused on debugger testing [21, 14], but
these solutions cannot find bugs in other parts of the toolchain
(e.g., the compiler).

Most related to our work is a recent work by Yuanbo Li et
al. [15]. The paper focuses on assessing the correctness of
the variables’ values shown by a debugger for optimized code
of statically compiled languages, but does not consider other
classes of bugs (e.g., line information bugs). Furthermore, the
authors assume that source-line stepping is correct, which, as
shown in our motivating example, is not always true.

3. Key Insights

This paper introduces DEBUG?, a framework to expose debug
information bugs in production toolchains. We tested DEBUG?
on various toolchains, and found several new bugs like the one
presented in the motivating example.

Key insights: our analysis shows that after decades of devel-
opment, mature compiler (e.g., clang and GCC) and debugger
implementations still have a conspicuous amount of bugs that
can be found automatically. Surprisingly, many of these bugs
plague optimization levels specifically created for a smooth
debugging experience (i.e., -0g).

Beyond the state of the art: our framework is much more gen-
eral than previous efforts [15, 21, 14], being able to find sev-



eral classes of bugs in the entire debug lifecycle of optimized
binaries. Specifically, DEBUG? is not limited to discovering
specific bugs in the debugger (as [21, 14]). It relies on generic
cross-toolchain and cross-language invariants to find a rich
family of bugs (differently from [15]) in the entire toolchain,
including wrong source-line stepping and wrong backtraces.

4. Main Artifacts

e We introduce DEBUG? (see Full Paper §2). The frame-
work feeds random source programs to a target toolchain
and performs a differential analysis on the debugging be-
havior of their optimized/unoptimized binaries to expose
bugs. To automatically check for (un)expected behavioral
differences, DEBUG? relies on trace invariants based on the
(in)consistency of common debug elements, such as source
lines, stack frames, and function arguments.

e We introduce four different trace invariants that check dif-
ferent debug information (see Full Paper §3):

The Line Invariant (LI) checks for misstepped lines;

The Backtrace Invariant (BI) checks for spurious frames

in the backtrace of a line;

The Scope Invariant (SI) checks if there are out-of-scope

variables;

The Parameters Invariants (PI) checks the consistency

of the values assumed by function parameters.

o The extensive evaluation presented in the paper positively
answers the following questions (see Full Paper §3):

- Does DEBUG? find real bugs in our reference toolchain
(LLVM) across different optimization levels and compo-
nents (e.g., compiler and debugger)?

- Does DEBUG? generalize to different toolchains and pro-
gramming languages?

e We answered our research questions by evaluating a python
prototype of DEBUG?. In roughly three months, we found
23 bugs on the trunk versions of the LLVM toolchain (from
April to mid-July). Our methodology was able to find sev-
eral violations of our invariants, which we automatically
triaged and manually analyzed to identify bugs (see Full
Paper §5.2). We studied the relationship between invariant
violations and bugs. Our results showed that more than
99% of violations were caused by bugs (see Full Paper
§5.1). We also performed additional experiments to identify
the optimization passes that are more prone to bugs. We
ran similar tests on the GNU toolchain and Rust toolchain
aimed at investigating the generality of DEBUG? across
different toolchains and programming languages (see Full
Paper §5.3).

5. Key Results and Contributions

We make the following key contributions:

e DEBUG?, a framework to scrutinize the debug information
lifecycle for optimized binaries using trace invariants.

e Using DEBUG? on the tested toolchains, we exposed and

reported 23 bugs for the LLVM toolchain (clang and 11db),
8 bugs for the GNU toolchain (GCC and gdb) and 3 bugs
on the Rust toolchain (rustc and lldb). The developers
confirmed 22 bugs, 14 of which have been fixed.

The bugs we reported sparked much discussion among de-
velopers, leading to interesting lessons learned:

e There are no formal guidelines to define how debug infor-
mation should be preserved during optimization passes of
modern toolchains. This led developers to adopt a case-by-
case approach to decide how fix our bugs. Such strategy,
in the long term, is likely to lead to inconsistent behavior.
After reviewing our findings, the LLVM developers pub-
lished a set of basic guidelines to update debug information
during certain optimization passes [12]. This is a concrete
outcome of our effort and a first important step towards
defining shared guidelines.

o We discovered some shortcomings of DWAREF, the de-facto
standard used to encode debug information for UNIX plat-
forms. Notably, DWARF does not provide a way to map a
single address to multiple source locations, making it im-
possible to represent the result of some optimization passes
correctly (e.g., common subexpression elimination).

6. Why ASPLOS

Debugging, reproducing, and triaging bugs are all well-
established and long-studied problems in the systems com-
munity [22, 16, 1, 11, 10, 2]. In previous efforts, the main
focus has been on improving the reproducibility of production
bugs, assuming correct debug information. With DEBUG?,
we show how bugs in real-world toolchains might provide the
developer with invalid debug information, making it impos-
sible to triage or reproduce a particular production bug. In
other words, DEBUG? complements prior work in the systems
community on improving debuggability. At the same time,
DEBUG? makes important contributions to the field of com-
piler/toolchain testing, which is on the critical path of the PL
community [15, 17, 24, 13]. Finally, DEBUG?’s generic bug
detection strategy based on differential invariants draws inspi-
ration from much prior work on invariants-based bug detection
published at ASPLOS (e.g., [18, 4]).

7. Citation for Most Influential Paper Award

This paper introduced DEBUG?, the first framework to scru-
tinize the entire debug information lifecycle for optimized
programs. DEBUG? uses trace invariants to perform differen-
tial analysis on the debug traces produced by optimized and
unoptimized binaries. Invariant violations expose bugs that
affect the debug lifecycle and that may reside in different parts
of the toolchain. DEBUG? helped discover and fix many bugs
affecting widely used toolchains for several years, severely
impacting the debugging experience on production software.



References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

Joy Arulraj, Guoliang Jin, and Shan Lu. Leveraging the short-term
memory of hardware to diagnose production-run software failures.
In ASPLOS ’14: Proceedings of the 19th international conference
on Architectural support for programming languages and operating
systems, pages 207-222, 2014.

Matthew Casias, Kevin Angstadt, Tommy Tracy II, Kevin Skadron, and
Westley Weimer. Debugging support for pattern-matching languages
and accelerators. In Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’19, page 1073-1086, New York, NY,
USA, 2019. Association for Computing Machinery.

Junjie Chen, Jibesh Patra, Michael Pradel, Yingfei Xiong, Hongyu
Zhang, Dan Hao, and Lu Zhang. A survey of compiler testing. ACM
Computing Surveys (CSUR), 53(1):1-36, 2020.

David Devecsery, Peter M. Chen, Jason Flinn, and Satish
Narayanasamy. Optimistic hybrid analysis: Accelerating dynamic
analysis through predicated static analysis. In Proceedings of the
Twenty-Third International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS 18, pages
348-362, New York, NY, USA, 2018. Association for Computing
Machinery.

V. D’Silva, M. Payer, and D. Song. The correctness-security gap in
compiler optimization. In 2015 IEEE Security and Privacy Workshops,
pages 73-87, 2015.

John Hennessy. Symbolic debugging of optimized code. ACM Trans-
actions on Programming Languages and Systems (TOPLAS), 4(3):323—
344, 1982.

Urs Holzle, Craig Chambers, and David Ungar. Debugging optimized
code with dynamic deoptimization. In Proceedings of the ACM SIG-
PLAN 1992 conference on Programming language design and imple-
mentation, pages 32—43, 1992.

Clara Jaramillo, Rajiv Gupta, and Mary Lou Soffa. Fulldoc: A full
reporting debugger for optimized code. In International Static Analysis
Symposium, pages 240-259. Springer, 2000.

C. Jia and W. K. Chan. Which compiler optimization options should i
use for detecting data races in multithreaded programs? In 2013 8th
International Workshop on Automation of Software Test (AST), pages
53-56, 2013.

Mark Scott Johnson. Some requirements for architectural support
of software debugging. In Proceedings of the First International
Symposium on Architectural Support for Programming Languages and
Operating Systems, ASPLOS I, page 140-148, New York, NY, USA,
1982. Association for Computing Machinery.

Omer Katz, Noam Rinetzky, and Eran Yahav. Statistical reconstruction
of class hierarchies in binaries. In Proceedings of the Twenty-Third
International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’18, page 363-376, New
York, NY, USA, 2018. Association for Computing Machinery.

Vedant Kumar. How to update debug info: A guide for llvm pass au-
thors. https://github.com/1lvm/llvm-project/blob/
master/llvm/docs/HowToUpdateDebugInfo.rst, 2020.
[Online; accessed 27-July-2020].

Vu Le, Mehrdad Afshari, and Zhendong Su. Compiler validation via
equivalence modulo inputs. ACM SIGPLAN Notices, 49(6):216-226,
2014.

Daniel Lehmann and Michael Pradel. Feedback-directed differential
testing of interactive debuggers. In Proceedings of the 2018 26th
ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, pages
610-620, 2018.

Yuanbo Li, Shuo Ding, Qirun Zhang, and Davide Italiano. Debug
information validation for optimized code. In PLDI, pages 1052-1065,
2020.

Ali José Mashtizadeh, Tal Garfinkel, David Terei, David Mazieres, and
Mendel Rosenblum. Towards practical default-on multi-core record/re-
play. In ASPLOS ’17: Proceedings of the Twenty-Second International
Conference on Architectural Support for Programming Languages and
Operating Systems, 2017.

John Regehr, Yang Chen, Pascal Cuoq, Eric Eide, Chucky Ellison, and
Xuejun Yang. Test-case reduction for ¢ compiler bugs. In Proceedings
of the 33rd ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI *12, pages 335-346, New York, NY,
USA, 2012. Association for Computing Machinery.

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Swarup Kumar Sahoo, John Criswell, Chase Geigle, and Vikram Adve.
Using likely invariants for automated software fault localization. In
Proceedings of the Eighteenth International Conference on Architec-
tural Support for Programming Languages and Operating Systems,
ASPLOS 13, pages 139-152, New York, NY, USA, 2013. Association
for Computing Machinery.

Eric Schulte, Jonathan Dorn, Stephen Harding, Stephanie Forrest, and
Westley Weimer. Post-compiler software optimization for reducing
energy. ACM SIGARCH Computer Architecture News, 42(1):639-652,
2014.

Caroline Tice and Susan L Graham. Optview: a new approach for
examining optimized code. ACM SIGPLAN Notices, 33(7):19-26,
1998.

Sandro Tolksdorf, Daniel Lehmann, and Michael Pradel. Interactive
metamorphic testing of debuggers. In Proceedings of the 28th ACM
SIGSOFT International Symposium on Software Testing and Analysis,
pages 273-283, 2019.

Kaushik Veeraraghavan, Dongyoon Lee, Benjamin Wester, Jessica
Ouyang, Peter M. Chen, Jason Flinn, and Satish Narayanasamy. Dou-
bleplay: Parallelizing sequential logging and replay. In Proceedings
of the Sixteenth International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS XVI,
page 15-26, New York, NY, USA, 2011. Association for Computing
Machinery.

Roland Wismiiller. Debugging of globally optimized programs using
data flow analysis. In Proceedings of the ACM SIGPLAN 1994 con-
ference on Programming language design and implementation, pages
278-289, 1994.

Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. Finding and
understanding bugs in ¢ compilers. In Proceedings of the 32nd ACM
SIGPLAN conference on Programming language design and implemen-
tation, pages 283-294, 2011.

Jie Yin, Gang Tan, Hao Li, Xiaolong Bai, Yu-Ping Wang, and Shi-Min
Hu. Debugopt: Debugging fully optimized natively compiled programs
using multistage instrumentation. Science of Computer Programming,
169:18 — 32, 2019.


https://github.com/llvm/llvm-project/blob/master/llvm/docs/HowToUpdateDebugInfo.rst
https://github.com/llvm/llvm-project/blob/master/llvm/docs/HowToUpdateDebugInfo.rst

	Motivation
	Limitations of the State of the Art
	Key Insights
	Main Artifacts
	Key Results and Contributions
	Why ASPLOS
	Citation for Most Influential Paper Award

