Dagger: Efficient and Fast RPCs for Cloud Microservices
with Near-Memory Reconfigurable NICs
Extended Abstract

Nikita Lazarev Shaojie Xiang

Neil Adit

Zhiru Zhang Christina Delimitrou

Cornell University

1. Motivation

The shift of cloud services from monolithic applications to
microservices and the increasing interest in interactive ap-
plications with strict latency constraints, are changing the
requirements of datacenter networks. Typical microservices
are not computationally intense and very short; in the order of
a few hundred millisecond to a few seconds [12,24], therefore
a substantial fraction of their latency comes from networking.
Remote Procedure Calls (RPC) are one of the most common
communication primitives in microservices. Unfortunately,
commercially-available RPC frameworks, such as Apache
Thrift [3], gRPC [2], Finagle [1] are all based on commod-
ity networking systems, like the Linux kernel stack, which
introduce considerably overheads when it comes to microser-
vices [14,22,24]. Reducing these overheads and improving
the overall performance of cloud networking is one of the
key challenges towards enabling more widespread adoption of
interactive microservices.

2. Limitations of the State of the Art

We can classify current solutions on low-latency datacenter
networks into three groups. The first class is based on algo-
rithmic optimizations of networking stacks. This includes
proposals for new transport layers [5,6,13,19], with optimized
congestion control, flow scheduling, connection management,
etc. Some proposals move network processing from kernel
to user space [8, 17] therefore eliminating the inefficiency of
crossing the kernel-user boundary. Even though these solu-
tions improve the overall performance of networking systems,
they are subject to two issues: (1) software-based implemen-
tations of network protocols add CPU-related overheads, and
consume processor resources, which is especially problem-
atic, given the highly-concurrent nature of microservices, and
(2) almost all commercially-available NICs are peripheral de-
vices seen by processors over PCle interfaces, which has been
shown to be inefficient for fine-grained workloads [11, 15,20].

To address the first issue of software-based networking
stacks, another line of research [9, 16,25] proposes to leverage
specialized adapters such as RDMA NICs to run the network-
ing stack in hardware, and make use of the remote memory
abstraction to implement efficient high-level communication
primitives, such as RPCs, on top of it. However, these pro-

posals (1) still inherit the PCle-related overheads of software-
based solutions [15], since all commercial RDMA adapters
are based on PCle, and (2) they do not offload the whole com-
munication stack to hardware, keeping the execution of the
RPC layer on the host CPU.

Both these limitations are receiving increased attention to-
day. To this end, the recent proposals have presented solutions
for integrating NICs into the host processor (soNUMA [21])
or memory (NetDIMM [4]), and discussed the implementation
of hardware-offloaded RPC stacks on top of them [22, 26].
Unfortunately, these proposals require taping out custom hard-
ware, which requires considerably investments at cloud scale,
and is not well-suited for frequently-changing applications.
For instance, NetDIMM requires designing custom memory
chips that integrate networking interfaces, while NeBuLa [26]
proposes to push packets all the way to the L1 caches, which
requires redesigning the processor memory subsystem. De-
spite these issues, the idea of closely-coupling processors with
NICs is both attractive and promising. In this work, we discuss
how closely-coupled NICs can be made practical by leveraging
FPGAs attached to the CPUs over coherent memory intercon-
nects (i.e., NUMA) as networking devices.

3. Key Insights

Dagger provides the following three key insights regarding
efficient datacenter networks for interactive microservices.

1. Fully offloading the RPC stack in hardware: We pro-
file commodity networking stacks for microservices, and find
that both the RPC layer and the networking layer, i.e., trans-
port, NICs, wiring, account for a sizeable portion of appli-
cation latency. This shows that offloading/accelerating the
networking layer alone is not sufficient. For this reason, Dag-
ger offloads the entire networking stack up to, and including,
the RPC layer to hardware, leaving only a small portion of
computation on the processor, corresponding to the RPC API
and connection set-up routines.

2. Leveraging memory interconnects as CPU-NIC inter-
faces: PCle has been the de facto interface between the CPU
and NIC for a long time. However, the PCle messaging model
is not efficient for transferring small, fine-grained requests,
which dominate network traffic in microservices. In contrast,
memory interconnects provide a different messaging scheme,



which does not require explicit notifications to be sent from the
processor to notify NICs about new requests: the data transfer
is instead handled by the interconnect’s state machine and is
implemented entirely in hardware. This improves the CPU
efficiency of transferring small requests, resulting in higher
throughput and lower latency. The current version of Dagger
is based on the Intel UPI NUMA interconnect, available in
commercial server Intel Xeon processors.

3. FPGA implementation of reconfigurable NICs: All
commercially successful RPC frameworks are modular and
reconfigurable. For example, Thrift provides a flexible choice
of serialization/de-serialization schemes and transport layers.
This is very important for microservices, given the diversity in
their characteristics, and the frequent cadence of their updates.
We design Dagger following a similar principle: our NIC is
based on a fully programmable FPGA. This allows the users
or cloud providers to configure the hardware RPC pipeline
based on the demands and traffic characteristics of their ap-
plications. In addition to our NUMA-based interface, Dagger
also implements the commodity doorbell method, which is
more efficient when networking objects are large. We charac-
terize the networking footprint of microservices and observe
that RPC sizes differ across microservices, even within the
same application: some tiers never send RPCs larger than 64
Bytes while others only deal with large RPCs of few KBytes.
Depending on the network footprint of a target microservice,
Dagger’s CPU-NIC interface can be differently configured.

4. Contributions & Main Artifacts

In this work, we show that memory interconnects provide a
better alternative to CPU-NIC interfaces than PCle busses
and other forms of integrating NICs to CPUs [4,21]. We
show that this approach enables efficient implementation of
hardware-offloaded RPC stacks, providing dramatic perfor-
mance improvements to interactive microservices. Dagger is
implemented in real FPGA hardware, therefore it captures all

factors contributing to application performance, and supports a

variety of interactive cloud services, from small microservices

to key-value stores, like memcached.
We present the following three artifacts:

o Characterization of the networking footprint of represen-
tative interactive microservices, which highlights the domi-
nance of fine-grained, small requests, and guides the design
decisions in Dagger. Our study also demonstrates the di-
verse requirements of different microservices, underpining
the need for the networking stack to be programmable.

e Design of Dagger on a real commercially-available platform
based on a server Intel Xeon ES processor, closely coupled
with an FPGA over a UPI memory interconnect. Dagger is
the first attempt to leverage closely-coupled FPGAs as pro-
grammable networking devices. In all previous proposals
on leveraging FPGAs in datacenters [7, 10, 23], the FPGAs
are viewed by the host CPU as peripheral devices connected
over PCle, which comes with substantial performance over-

heads. We offload the entire communication stack to the
FPGA, including the RPC layer, transport, and data link
layers. We make the design modular and programmable,
so users can select the most suitable transport layers and
CPU-NIC interfaces for their target microservices.

e End-to-End Evaluation of Dagger using stress testing
with RPC requests, as well as widely-used datacenter appli-
cations, such as memcached, showing the system’s perfor-
mance benefits and practicality, without the requirement for
taping out custom chips.

5. Key Results

We evaluate Dagger using both microbenchmarks and real
cloud applications. First, we compare different CPU-NIC in-
terfaces, and show the benefits of using memory interconnects
compared to previous PCle-based solutions. We show that data
transfer over memory interconnects achieves 45% and 39%
better median and tail end-to-end latency of small (up to 64
Bytes) RPCs compared to the standard doorbell [15] method
based on a PClIe bus. We then show Dagger’s scalability with
the number of threads and CPU cores. Finally, we compare
the performance of transferring end-to-end RPCs to previ-
ous work. We show that Dagger achieves 2.4 — 3.8 x higher
per-core RPC throughput compared to software-optimized so-
lutions leveraging user space networking and RDMA, while
also achieving state-of-the-art request latency of 1 - 2 us. The
throughput of Dagger scales up to 84 Mrps with 8 threads
on 4 CPU cores, which is 23% higher than the best reported
throughput of the RDMA solution FaSST [16].

Our experiments with memcached show that Dagger can
be easily integrated with third party datacenter applications,
with minimal changes in their codebase. Running on top of
Dagger, memcached shows 3.2 — 8 us and 5.8 — 18 us median
and tail latency, which is 2.3 x lower in comparison with the
highly-optimized key-value store MICA [18], when running
over optimized DPDK-based user space networking.

6. Why ASPLOS?

Dagger is a software-hardware co-designed system that lever-
ages low-level processor interconnects for efficient support of
high-level cloud RPCs. Dagger is interdisciplinary, being in
the intersection of cloud computing, reconfigurable hardware,
computer architecture, and networking. Similar papers on
network optimization for cloud systems have appeared in prior
ASPLOS iterations many times.

7. Citation for Most Influential Paper Award

For proposing the integration of FPGA-based accelerators in
cloud systems as first-class citizens using memory intercon-
nects, rather than PCle-attached peripheral devices, and for
showing that offloading the entire RPC stack on hardware
using closely-coupled NICs significantly improves the perfor-
mance of interactive cloud services.



References

[1]
[2]
[3]
[4]
[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

Finagle rpc. accessed August, 2020. https://twitter.github.
io/finagle/.

gRPC. accessed May, 2020. https://grpc.io/.

Thrift RPC. accessed May, 2020. https://thrift.apache.org/.

Mohammad Alian and Nam Sung Kim. NetDIMM: Low-latency
near-memory network interface architecture. Int’l Symp. on Microar-
chitecture (MICRO), 2019.

Mohammad Alizadeh, Adel Javanmard, and Balaji Prabhakar. Anal-
ysis of DCTCP: Stability, convergence, and fairness. Int’l Conf. on
Measurement and Modeling of Computer Systems (SIGMETRICS),
2011.

Mohammad Alizadeh, Shuang Yang, Milad Sharif, Sachin Katti, Nick
McKeown, Balaji Prabhakar, and Scott Shenker. Pfabric: Minimal near-
optimal datacenter transport. In Proceedings of the ACM SIGCOMM
2013 Conference on SIGCOMM, SIGCOMM ’13, page 435-446, New
York, NY, USA, 2013. Association for Computing Machinery.

Mina Tahmasbi Arashloo, Alexey Lavrov, Manya Ghobadi, Jennifer
Rexford, David Walker, and David Wentzlaff. Enabling programmable
transport protocols in high-speed NICs. USENIX Symp. on Networked
Systems Design and Implementation (NSDI), 2020.

Adam Belay, George Prekas, Ana Klimovic, Samuel Grossman, Chris-
tos Kozyrakis, and Edouard Bugnion. IX: A protected dataplane oper-
ating system for high throughput and low latency. USENIX Symp. on
Operating Systems Design and Implementation (OSDI).

Aleksandar Dragojevi¢, Dushyanth Narayanan, Miguel Castro, and
Orion Hodson. FaRM: Fast remote memory. USENIX Symp. on
Networked Systems Design and Implementation (NSDI), 2014.

Daniel Firestone, Andrew Putnam, Sambhrama Mundkur, Derek Chiou,
Alireza Dabagh, Mike Andrewartha, Hari Angepat, Vivek Bhanu,
Adrian Caulfield, Eric Chung, Harish Kumar Chandrappa, Somesh
Chaturmohta, Matt Humphrey, Jack Lavier, Norman Lam, Fengfen
Liu, Kalin Ovtcharov, Jitu Padhye, Gautham Popuri, Shachar Raindel,
Tejas Sapre, Mark Shaw, Gabriel Silva, Madhan Sivakumar, Nisheeth
Srivastava, Anshuman Verma, Qasim Zuhair, Deepak Bansal, Doug
Burger, Kushagra Vaid, David A. Maltz, and Albert Greenberg. Azure
accelerated networking: Smartnics in the public cloud. In Proceed-
ings of the 15th USENIX Conference on Networked Systems Design
and Implementation, NSDI'18, page 51-64, USA, 2018. USENIX
Association.

Mario Flajslik and Mendel Rosenblum. Network interface design for
low latency request-response protocols. USENIX Annual Technical
Conf. (ATC), 2013.

Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi,
Nayan Katarki, Ariana Bruno, Justin Hu, Brian Ritchken, Brendon
Jackson, Kelvin Hu, Meghna Pancholi, Yuan He, Brett Clancy, Chris
Colen, Fukang Wen, Catherine Leung, Siyuan Wang, Leon Zaruvinsky,
Mateo Espinosa, Rick Lin, Zhongling Liu, Jake Padilla, and Christina
Delimitrou. An open-source benchmark suite for microservices and
their hardware-software implications for cloud and edge systems. Inter-
national Conf. on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), 2019.

EunYoung Jeong, Shinae Wood, Muhammad Jamshed, Haewon Jeong,
Sunghwan Thm, Dongsu Han, and KyoungSoo Park. mTCP: a highly

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

scalable user-level TCP stack for multicore systems. USENIX Symp.
on Networked Systems Design and Implementation (NSDI), 2014.
Anuj Kalia, Michael Kaminsky, and David Andersen. Datacenter RPCs
can be general and fast. USENIX Symp. on Networked Systems Design
and Implementation (NSDI), 2019.

Anuj Kalia, Michael Kaminsky, and David G. Andersen. Design
guidelines for high performance RDMA systems. USENIX Annual
Technical Conf. (ATC), 2016.

Anuj Kalia, Michael Kaminsky, and David G. Andersen. FaSST: Fast,
scalable and simple distributed transactions with two-sided (RDMA)
datagram RPCs. USENIX Symp. on Operating Systems Design and
Implementation (OSDI), 2016.

Antoine Kaufmann, Tim Stamler, Simon Peter, Naveen Kr. Sharma,
Arvind Krishnamurthy, and Thomas Anderson. Tas: Tcp acceleration
as an os service. In Proceedings of the Fourteenth EuroSys Confer-
ence 2019, EuroSys 19, New York, NY, USA, 2019. Association for
Computing Machinery.

Hyeontaek Lim, Dongsu Han, David G. Andersen, and Michael Kamin-
sky. MICA: A holistic approach to fast in-memory key-value storage.
Symposium on Networked Systems Design and Implementation (NSDI),
2014.

Behnam Montazeri, Yilong Li, Mohammad Alizadeh, and John Ouster-
hout. Homa: A receiver-driven low-latency transport protocol using
network priorities. ACM Special Interest Group on Data Communica-
tion (SIGCOMM), 2018.

Rolf Neugebauer, Gianni Antichi, José Fernando Zazo, Yury Audze-
vich, Sergio Lopez-Buedo, and Andrew W. Moore. Understanding
PCle performance for end host networking. ACM Special Interest
Group on Data Communication (SIGCOMM), 2018.

Stanko Novakovic, Alexandros Daglis, Edouard Bugnion, Babak Fal-
safi, and Boris Grot. Scale-out NUMA. Int’l Conf. on Architectural
Support for Programming Languages and Operating Systems (ASP-
LOS), 2014.

Arash Pourhabibi, Siddharth Gupta, Hussein Kassir, Mark Sutherland,
Zilu Tian, Mario Paulo Drumond, Babak Falsafi, and Christoph Koch.
Optimus prime: Accelerating data transformation in servers. Int’l Conf.
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), 2020.

D. Sidler, Z. Istvan, and G. Alonso. Low-latency TCP/IP stack for
data center applications. Int’l Conf. on Field Programmable Logic and
Applications (FPL), 2016.

Akshitha Sriraman and Abhishek Dhanotia. Accelerometer: Under-
standing acceleration opportunities for data center overheads at hyper-
scale. Int’l Conf. on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), 2020.

Patrick Stuedi, Animesh Trivedi, Bernard Metzler, and Jonas Pfefferle.
Darpc: Data center rpc. In Proceedings of the ACM Symposium on
Cloud Computing, SOCC ’14, page 1-13, New York, NY, USA, 2014.
Association for Computing Machinery.

Mark Sutherland, Siddharth Gupta, Babak Falsafi, Virendra Marathe,
Dionisios Pnevmatikatos, and Alexandros Daglis. The NeBuLa RPC-
optimized architecture. Int’l Symp. on Computer Architecture (ISCA),
2020.


https://twitter.github.io/finagle/
https://twitter.github.io/finagle/
https://grpc.io/
https://thrift.apache.org/

	Motivation
	Limitations of the State of the Art
	Key Insights
	Contributions & Main Artifacts
	Key Results
	Why ASPLOS? 
	Citation for Most Influential Paper Award

