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1. Motivation

Statistical machine learning often uses probabilistic algo-
rithms, such as Markov Chain Monte Carlo (MCMC) methods,
to solve a wide range of problems. As alternatives to Deep
Neural Networks, these algorithms provide easier access to
interpreting why a given result is obtained through their model
transparency and statistical properties. The algorithms, of-
ten considered too slow on conventional processors due to
inefficient sampling process, can be accelerated with special-
ized hardware by exploiting parallelism and utilizing various
hardware approximations for efficiency, such as reducing bit
representation, truncating small values to zero, or simplifying
the random number generator. Understanding the influence of
these approximations on the correct execution of target algo-
rithms is crucial to meet the quality requirement. A common
approach to evaluating correctness is to compare the end-
point result quality (“accuracy”) against accurately-measured
or hand-labeled ground-truth data using community-standard
benchmarks and metrics: the hardware execution is consid-
ered to be correct if it provides comparable “accuracy” to the
software-only implementations that do not have these approxi-
mations. Statistical guarantees can be made on the end-point
results [6, 9].

However, domain experts in statistics, especially Bayesian
Inference are interested in the full distribution of possible
results rather than a single-point estimate, including both
end-point results and quantified uncertainty—statistical prop-
erties of the full distribution, a.k.a., statistical robustness.
Hardware and/or software solutions should get both aspects
correct. Therefore, in the domain of probabilistic comput-
ing/algorithms, correctness is defined by more than the end-
point result of executing the algorithm, and includes statistical
robustness. Statements and guarantees on the application
end-point results are necessary but not sufficient to claim cor-
rectness. Failure to adequately account for domain-defined
correctness can have adverse or catastrophic outcomes, such
as a surgeon failing to completely remove a tumor due to
incorrect uncertainty in a segmented image [2, 8]. Further-
more, measuring end-point results may not always be possible
as ground-truth data is not always accessible. Therefore, a
probabilistic architecture should provide some measure (or
guarantee) of statistical robustness.
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2. Limitations of the State of the Art
Current methodologies for evaluating probabilistic accelera-
tors are often incomplete or adhoc in evaluating correctness,
mostly focusing only on end-point result quality. Previous
work addresses some statistical metrics for MCMC accelera-
tors, such as KL-divergence and QQ plots [7], ESS/second [5],
and goodness of fit statistical tests [3, 10]. These metrics con-
sider limited aspects of statistical robustness: each metric only
addresses one of the three pillars summarized in Sec. 4. A
comprehensive correctness evaluation methodology for a prob-
abilistic architecture is needed and has yet to be proposed in
consideration of both end-point result quality and statistical
robustness.

3. Key Insights
This work brings two key insights:
• Only measuring end-point result quality is insufficient to sur-

face the design issues and thus a comprehensive evaluation
on statistical robustness is necessary. An MCMC accelera-
tor [12] can achieve good application end-point result quality
but compromised statistical robustness. Applications need to
run more iterations on the accelerator to achieve satisfactory
statistical robustness, reducing the effective speedup.

• Naively applying existing popular metrics from domain ex-
perts is problematic in the evaluated applications (stereo
vision and motion estimation). The metrics should be modi-
fied to account for high dimensionality of the target applica-
tions and random variables with zero empirical variance.

4. Main Artifacts
This work takes a first step toward defining metrics and a
methodology for quantitatively evaluating correctness of prob-
abilistic accelerators beyond end-point result quality. We pro-
pose three pillars of statistical robustness: 1) sampling quality,
2) convergence diagnostic, and 3) goodness of fit. Each pillar
has at least one quantitative empirical metric, does not require
ground-truth data, and collectively these pillars enable com-
parison of specialized hardware to a target precision, such as a
64-bit floating-point (FP64) software implementation. We ex-
pose several challenges with naively applying existing popular
metrics for our purposes, including: high dimensionality of the
target applications, and random variables with zero empirical
variance. Therefore, we modify the existing methodologies
for sampling quality and convergence diagnostic, and propose



a new metric for convergence diagnostic. Below is a summary
of each pillar.

Pillar I) Sampling Quality. The intrinsic nature of MCMC
methods creates dependency between samples. A sufficient
number of independent samples are needed to converge and
produce high-quality results. We use Effective Sample Size
(ESS) [5, 11] to measure the number of independent samples
drawn from an MCMC run, and report the arithmetic mean
as a scalar metric. The existing method does not consider
a practically possible case that a random variable produces
empirically zero variance. We modified the method to report
“overall” and “active” ESS values separately to account for
possible biases. Low ESS indicates that more iterations may
be required to generate sufficient independent samples.

Pillar II) Convergence Diagnostic. The total running time
of an MCMC run is determined by when it converges. Con-
vergence can be measured by Gelman-Rubin’s R̂ [1], but this
metric is undefined for variables with zero variance. There-
fore, we propose a process to determine convergence that
accounts for zero variance and a new metric—convergence
percentage—based on R̂, to measure the total percentage of
converged results. Low convergence percentage indicates that
more iterations are required for the model to converge.

Pillar III) Goodness of Fit. In the absence of ground-truth
data (labeled data), it is important to understand the differences
between the baseline precision (e.g, FP64) and hardware end-
point results to evaluate the overall quality of the hardware.
We provide two “goodness of fit" approaches: 1) Root Mean
Squared Error (RMSE) on application specific data relative
to a baseline reference, and 2) Jensen-Shannon Divergence
(JSD) [4] to evaluate all possible data inputs in the binary label
case and provide the worst-case distribution divergence.

We apply our framework on an representative MCMC
accelerator—Stochastic Processing Unit (SPU) [12]—and
demonstrate the benefits of using this framework on design
space exploration. We implemented our framework, the FP64
software implementation, and a functionally equivalent SPU
simulator in MATLAB for statistical robustness analysis. We
also implemented SPU in Verilog, Chisel, and HLS all with
verified results, for FPGA/ASIC resource usage analysis for
design space exploration.

5. Key Results and Contributions
We summarize two most important results:
• A representative accelerator [12], with limited precision and

other approximation techniques, achieves the same applica-
tion end-point result quality as FP64-software, confirming
the previous work, but differs from FP64-software with a
lower ESS and a lower convergence percentage. Filling the
gap requires 2× more iterations on the accelerator, reducing
the accelerator’s effective speedup.

• A considerable improvement in statistical robustness, com-
parable to FP64-software, can be achieved by slightly in-
creasing the bit precision from 4 to 6 and removing an

approximation technique, with only 1.20× area and 1.10×
power overhead, without the commensurate overhead of
FP64.

Below summarizes our contributions:
• We proposed a three-pillar framework, to our knowledge,

the first attempt to a comprehensive methodology for quan-
titatively evaluating correctness of probabilistic accelerators
in considerations of both end-point result quality and statis-
tical robustness. Previous work [3, 5, 7, 10] belongs to one
of three proposed pillars and we argue (main paper Sec. 4
and Sec. 5) all three pillars are needed to fully characterize
statistical robustness of an MCMC accelerator.

• We expose challenges with directly applying the existing
popular metrics. Thus we modified the existing methodolo-
gies in sampling quality and convergence diagnostic and
propose a new metric (convergence percentage) in conver-
gence diagnostic.

• We apply our framework to a representative MCMC acceler-
ator and surface design issues that cannot be exposed using
only application end-point result quality.

• We demonstrate the benefits of this framework to guide de-
sign space exploration in an MCMC accelerator to achieve a
design point with satisfactory statistical robustness, avoiding
FP hardware overheads.

6. Why ASPLOS

Domain-specific accelerators require performance and cor-
rectness evaluation in consideration of the full stack from
algorithm to implementation. In the domain of probabilistic
computing/algorithms, correctness is defined by more than
the end-point result of executing the algorithm, and includes
additional statistical properties. A comprehensive methodol-
ogy to evaluate these properties of a probabilistic architecture
is needed and has yet to be defined. Our work takes the first
step toward such a methodology. The proposed pillars can
inform end-users by characterizing existing hardware and in-
form hardware designers by using the pillars for design space
exploration. We believe our interdisciplinary work in archi-
tecture, probabilistic computing/algorithms, and statistics is
a good fit to ASPLOS by supporting the community to build
efficient and statistically robust hardware/systems.

7. Citation for Most Influential Paper Award

The paper “Statistical Robustness of Markov Chain Monte
Carlo Accelerators” argues a comprehensive evaluation on
statistical robustness in addition to application end-point result
quality is necessary when evaluating probabilistic accelerators.
The paper provides a methodology for quantitatively evaluat-
ing correctness of MCMC accelerators, including three pillars
of statistical robustness: 1) sampling quality, 2) convergence
diagnostic, and 3) goodness-of-fit. The paper for the first time
brings the notion of “statistical robustness” into the process of
designing robust probabilistic accelerators.
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