
PIBE: Practical Kernel Control-flow Hardening with
Profile-guided Indirect Branch Elimination

(Extended Abstract)

Victor Duta, Erik van der Kouwe, Herbert Bos, and Cristiano Giuffrida

Vrije Universiteit Amsterdam

1. Motivation
Control flow hijacking attacks have ranked among the most
dangerous forms of compromise for decades, but now that the
attackers have also made the jump to the transient execution
domain, they have become particularly worrying.

In this paper, we focus on making control-flow hijacking
defenses practical for real-world deployment in OS kernels.
Our methodology applies equally to non-transient and tran-
sient hijacking defenses, but we deliberately limit ourselves
to the latter, for two reasons. First, transient execution at-
tacks [12, 6, 7] are potentially more versatile than traditional
control-flow attacks as they can be triggered across address
space and privilege boundaries, leading to sensitive data leaks
and thus loss of confidentiality even in the absence of soft-
ware vulnerabilies. This makes them particularly dangerous
for kernels running in cloud environments, which commonly
co-locate programs of mutually non-trusting users on the same
physical machine. Second, full mitigation of this flavor of
attacks is currently not practical as it entails applying complex
control-flow alterations and expensive serialization instruc-
tions (e.g., lfence) to all indirect branches in the kernel.

Moreover, by focusing on the kernel, we cover some of
the largest, most security-critical, most privileged and most
complex code bases on modern systems typically written in
unsafe languages such as C and C++. Kernels are attractive
targets to attackers because of their direct interaction with
less privileged code, while their security is critical for the
security of the whole system. Similarly, the performance
degradation introduced by transient defenses in the kernel
also affects the whole system, making system administrators
reluctant to deploy them. Finally, given that our approach
is based on the availability of a profiling workload, kernels
are ideal targets, since companies such as Google already
maintain representative profiling workloads to enable profile-
guided optimizations for their production kernels [9]. We
emphasize, however, that our approach applies equally to other
code: hypervisors, SGX(-like) enclaves, and user programs.

2. Limitations of the State of the Art
Unfortunately, there is no easy fix to control-flow hijacking
in hardware-based solutions, as current hardware fixes (a) do
not defend against all common flavors of transient hijacking
attacks, (b) have more dire performance implications than
state-of-the-art software solutions (e.g., 25-53% overhead as

discussed in [1]), and (c) are not available in all vulnerable
CPUs already used in production.

State-of-the-art software-based solutions against common
transient control-flow hijacking attacks harden vulnerable
indirect branches with instrumentation [12, 6, 7] and com-
prehensive protection is currently prohibitively expensive as
it requires applying a costly combination of state-of-the-art
defenses [11, 2, 5] for every indirect branch. Our experi-
ments show that a combination of retpolines [11], return ret-
polines [5], and LVI-related control-flow hardening [2] in-
curs a slowdown of 62.0% in userspace on SPEC CPU2006
userspace applications, and is even more impactful on ker-
nels, with a 149% slowdown on LMBench. Related efforts
to make transient execution defenses practical, such as Jump-
Switches [1] do not address all transient hijacking attacks and
only defend against Spectre v2. JumpSwitches are adaptive
to runtime workload changes, but at the cost of extra CPU
time to monitor target frequencies, as well as live-patching the
code which, in our experiments, is prone to synchronization
overhead due to RCU stalls.

3. Key Insights

In this paper, we show that the high overhead incurred by state-
of-the-art mitigations against transient control-flow hijacking
attacks is mostly due to the effect of hardening hot branches
(main insight). Therefore, instead of applying the defenses
pervasively to all indirect branches we can apply them to
colder paths and devise alternative solutions to guarantee pro-
tection on hot code paths. Based on this insight we devised
a profile-driven approach that avoids much of the overhead
incurred by the heavy-weight defenses, dramatically lower-
ing the performance impact of state-of-the-art mitigations and
making them practical for real-world deployment.

We propose PIBE, which offers comprehensive protection
against control-flow hijacking at a fraction of the cost of exist-
ing solutions, by revisiting design choices in compiler-based
code optimization. Our approach decides, for every indirect
branch whether to harden it with instrumentation code or elide
it altogether using code transformations. By removing specif-
ically the heavy hitters among the indirect branches through
tailored profile-guided optimization, PIBE aggressively re-
duces the number of vulnerable branches to allow the simulta-
neous application of multiple state-of-the-art defenses on the
remaining branches with practical overhead.



The distinction between hot and cold code is essential for
achieving optimal performance guarantees but, in most cases,
depends on the training workload. In this paper we show that,
even though the kernel is complex and has multiple subsys-
tems, the performance critical code paths are common across
multiple workloads (secondary insight). It is thus easier to
infer a robust training data set which guarantees that our ap-
proach can provide good (if not optimal) performance guaran-
tees even if the workload changes. This makes our approach
more generic and allows it to be applied even by vendors of
end-user binary software distributions, using a predetermined
profile that is not necessarily identical to the end user’s usage.

4. Main Artifacts

The key artifact presented in this paper is a solution that en-
ables practical hardening of indirect branches in the kernel
against transient control-flow hijacks at a fraction of the cost
of existing solutions. More specifically, we treat the transfor-
mations needed for hardening solutions as a cost-benefit opti-
mization game where, for each instruction to be instrumented,
the compiler decides to either add instrumentation code (i.e.,
the transient defense hardening) or to transform the code so
as to remove the instruction reducing the number of instru-
mentation points overall. In particular, to remove instructions
with no security side effects, we perform profile-guided indi-
rect branch elimination. The key idea is to revisit entrenched
notions in profile-guided optimizations such as indirect call
promotion and inlining, through novel algorithms that favor
aggressively reducing the number of indirect branches in hot
code paths over other traditional optimization objectives.

Our main artifact is implemented as a subset of compiler
passes applied to the kernel code base via tools from the LLVM
compiler framework. We evaluate the effectivness of our
design in delivering strong security guarantees at acceptable
overheads using the LMBench kernel intensive benchmarking
suite. Our evaluation is both fair and rigorous. We compare
against a baseline that reflects how Linux is tipically deployed
in real-life scenarios but also against a PGO baseline tuned to
give the best possible performance on the LMBench test suite.
Furthermore, we evaluate our design using both representative
and non-representative training data sets for LMBench.

5. Key Results and Contributions

The most important empirical results of our approach are as
follows. First, we show that our design preserves the security
guarantees of a costly yet comprehensive combination of tran-
sient control-flow hijacking defenses while also lowering the
(geometric mean) overhead from 149% to a moderate 10.6%
(on LMBench). This empirically proves that our design can
deliver strong security guarantees at a fraction of the cost of
current solutions, making defenses practical for deployment.
Second, we show that even if our algorithms are trained with a
different workload our design can still achieve good (if not op-

timal) performance guarantees (22.5% overhead on LMBench
while optimizing with an Apache workload). This experimen-
tally proves that our design is robust and provides speedups
even when the workload changes. The key contributions we
make in this paper are:
• A comprehensive security analysis of all common transient

control-flow hijacking defenses and their performance im-
plication in userspace and the kernel;

• PIBE, a design to offer full, yet practical, mitigation of
(transient) control-flow hijacking through profile-guided
indirect branch elimination;

• An evaluation that shows that PIBE reduces the overhead
of comprehensive protection for transient control flow hi-
jacking by an order of magnitude, from 149% (!) to 10.6%.

Comparison with State of the Art:
Our design builds on state-of-the-art mitigations against

speculative control-flow hijacking (i.e., retpolines [11], return
retpolines [5], and LVI [2]) and reduces their overhead by
eliminating the most performance critical forward and back-
ward edges and thus also the heavy instrumentation that needs
to be applied. We thus overcome the main limitation of these
mitigations: prohibitive performance overhead. We improve
each of the individual defenses performance over the state of
the art, well below 5% for each of them. As opposed to similar
defense optimizations (i.e., JumpSwitches) we do not execute
code at runtime, avoid synchronization overhead, and improve
cache locality as the instrumentation is placed close to the
indirect call and does not require jumps across the address
space (unlike JumpSwitches). Our solution performs better,
is simpler, and does not require kernel code modifications.
Moreover, our approach is broader, additionally mitigating
ret2spec [7] and LVI [12].

6. Why ASPLOS

This multidisciplinary systems work covers all three of the
main ASPLOS topics: computer architecture and hardware
(transient execution attacks), programming languages and
compilers (use of compiler instrumentation and optimization),
and operating systems and networking (protecting the OS
kernel). ASPLOS has in recent years included papers on
control flow hijacking defenses [3, 4] transient execution de-
fenses [10], and kernel hardening against information leaks [8].
Each of these topics is also covered in this paper. As such,
ASPLOS is a perfect fit for this work.

7. Citation for Most Influential Paper Award

PIBE is the first approach that makes comprehensive defenses
against transient control flow hijacking attacks on the kernel
practical for real-world deployment. We show that PIBE
brings down overhead for a comprehensive protection (with
state-of-the-art defenses) against all known such attacks from
149% to just 10.6%.

2



References
[1] Nadav Amit, Fred Jacobs, and Michael Wei. Jumpswitches: restor-

ing the performance of indirect branches in the era of spectre. In
2019 {USENIX} Annual Technical Conference ({USENIX}{ATC} 19),
pages 285–300, 2019.

[2] Chandler Carruth. Speculative load hardening. https://llvm.org/
docs/SpeculativeLoadHardening.html. Accessed: 2020-07-26.

[3] Christian DeLozier, Kavya Lakshminarayanan, Gilles Pokam, and
Joseph Devietti. Hurdle: Securing jump instructions against code reuse
attacks. In Proceedings of the Twenty-Fifth International Conference
on Architectural Support for Programming Languages and Operating
Systems, pages 653–666, 2020.

[4] Xinyang Ge, Weidong Cui, and Trent Jaeger. Griffin: Guarding control
flows using intel processor trace. ACM SIGPLAN Notices, 52(4):585–
598, 2017.

[5] Intel. Deep dive: Managed runtime speculative execution
side channel mitigations. https://software.intel.com/
security-software-guidance/insights/deep-dive-
managed-runtime-speculative-execution-side-channel-
mitigations. Accessed: 2020-08-07.

[6] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss,
Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas
Prescher, et al. Spectre attacks: Exploiting speculative execution. In
2019 IEEE Symposium on Security and Privacy (SP), pages 1–19.
IEEE, 2019.

[7] Giorgi Maisuradze and Christian Rossow. ret2spec: Speculative ex-
ecution using return stack buffers. In Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security, pages
2109–2122, 2018.

[8] Sebastian Österlund, Koen Koning, Pierre Olivier, Antonio Barbalace,
Herbert Bos, and Cristiano Giuffrida. kmvx: Detecting kernel informa-
tion leaks with multi-variant execution. In Proceedings of the Twenty-
Fourth International Conference on Architectural Support for Program-
ming Languages and Operating Systems, pages 559–572, 2019.

[9] Tolvanen Sami, Bill Wendling, and Nick Desaulniers. Lto, pgo, and
autofdo in the kernel. In Linux Plumbers Conference, 2020.

[10] Mohammadkazem Taram, Ashish Venkat, and Dean Tullsen. Context-
sensitive fencing: Securing speculative execution via microcode cus-
tomization. In Proceedings of the Twenty-Fourth International Con-
ference on Architectural Support for Programming Languages and
Operating Systems, pages 395–410, 2019.

[11] Paul Turner. Retpoline: a software construct for preventing branch-
target-injection. https://support.google.com/faqs/answer/
7625886. Accessed: 2020-07-26.

[12] Jo Van Bulck, Daniel Moghimi, Michael Schwarz, Moritz Lipp, Marina
Minkin, Daniel Genkin, Yuval Yarom, Berk Sunar, Daniel Gruss, and
Frank Piessens. Lvi: Hijacking transient execution through microar-
chitectural load value injection. In 41th IEEE Symposium on Security
and Privacy (S&P’20), pages 1399–1417, 2020.

3

https://llvm.org/docs/SpeculativeLoadHardening.html
https://llvm.org/docs/SpeculativeLoadHardening.html
https://software.intel.com/security-software-guidance/insights/deep-dive-managed-runtime-speculative-execution-side-channel-mitigations
https://software.intel.com/security-software-guidance/insights/deep-dive-managed-runtime-speculative-execution-side-channel-mitigations
https://software.intel.com/security-software-guidance/insights/deep-dive-managed-runtime-speculative-execution-side-channel-mitigations
https://software.intel.com/security-software-guidance/insights/deep-dive-managed-runtime-speculative-execution-side-channel-mitigations
https://support.google.com/faqs/answer/7625886
https://support.google.com/faqs/answer/7625886

	Motivation
	Limitations of the State of the Art
	Key Insights
	Main Artifacts
	Key Results and Contributions
	Why ASPLOS
	Citation for Most Influential Paper Award

