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1. Motivation

Quantization has emerged as one of the most important tech-
niques for making Deep Neural Network (DNN) inference
more efficient. A recent research focus has been on low-
resolution uniform quantization (e.g., 4-bit bit-width) for
weight and data values. The hardware assumed for this type of
quantization is typically straightforward bit-parallel multiplier-
accumulator (MAC) designs. Therefore, the motivation for
reducing the precision comes down to less data movement
and more efficient compute engines (e.g., 4-bit MACs in-
stead of 8-bit MACs). The compute engine is static in that
lower-resolution (e.g., 3-bit) values will not see any significant
computational benefit when implemented on a 4-bit MAC.

In this work, we design a MAC that can inherently support
multiple resolutions. To this end, we use a relatively new
form of quantization called term quantization [7], which oper-
ations on a budget of nonzero bits (or digits, for signed-digit
representations) in a group of values as opposed to simply
truncating the same lowest-order bits of individual values as
in conventional uniform quantization. Via term quantization,
we build a multi-resolution multiplier-accumulator (mMAC)
which can share terms in efficient support of a wide range of
term budgets, corresponding to different levels of quantization.

To the best of our knowledge, no prior work has explored the
design of a MAC that supports multiple resolutions. This prob-
lem is important, as many DNN inference scenarios can have a
large variation in the computation requirements of the system.
Our mMAC system enables a single meta multi-resolution
DNN to efficiently support a wide range of configurations
while achieving a good performance/cost trade-off.

2. Limitations of the State of the Art

As this paper covers multiple areas, we will describe each area
separately in order to discuss their respective limitations.
DNN Training Supporting Performance/Cost Trade-off:
In recent years, there has been a trend towards designing
neural network that achieve an on-demand performance/cost
trade-off. The most similar work to our approach is Once-For-
All [3], which allows for multiple sub-models to be trained
jointly using a teacher-student training paradigm. While their
work derives sub-models that share weight values, our work
proposes an approach that shares weight terms. Term sharing
allows for additional flexibility in weight representations and
therefore additional performance/cost trade-off benefits.

Quantization: Quantization has been studied extensively for
reducing the associated storage, I/O, and computation costs
of DNNs. The paper which proposed term quantization [7]
used it only for post-training quantization. Our paper shows
that term-quantization-aware model training can substantially
improve the performance over just post-training term quan-
tization. Additionally, we show how to efficiently support
field-configurable multi-resolution term quantization.
DNN Hardware Exploiting Bit-level Sparsity: Some recent
works [1, 4, 10, 7] have observed a high degree of bit-level
sparsity in DNNs which can be exploited in hardware design
to reduce the computational cost of inference. However, these
works assume pre-trained networks and do not consider multi-
resolution scenarios. In this work, we demonstrate that term-
quantization aware training is critical for the performance of
multi-resolution DNNs as noted above.

3. Key Insights

• We can train a single meta DNN capable of spawning
sub-models of varying precision during inference.

• We can share term across multiple sub-models and still
achieve good performance (Figure 15). This is enabled by
the proposed multi-resolution training approach.

• A single mMAC system supports efficient implementation
for multiple sub-models of varying resolutions (Figure 20).

4. Main Artifacts

4.1. Meta Multi-resolution DNN Training

Description: To support field-configurable multi-resolution
inference, we have developed a DNN training approach that
jointly optimizes multiple sub-models of varying resolution.
The result is a single meta multi-resolution model capable of
supporting multiple resolutions at runtime, with two novel
properties: storage sharing across the sub-models, as the
same non-zero terms are shared across sub-models, and com-
putation sharing as all sub-models can use the same mMAC
computation engine. To implement different quantization res-
olutions, we simply adjust the number of leading non-zero
terms across groups of weights.
Evaluation: We evaluate the performance of the multi-
resolution training approach in Section 6 on the following:
• (Section 6.1) How much performance is lost by enforcing

term sharing instead of training each sub-model separately?
The multi-resolution model is 0.25% to 1.25% worse on



ResNet-18 [5] than sub-models trained individually (Figure
15). The largest gap is for lowest-resolution sub-model.

• (Section 6.2) How does the distribution of weight values
change across sub-models? We find that term quantization
provides additional quantization levels which interpolate
between uniform and logarithmic quantization, enabling a
fine-grain performance/cost trade-off (Figure 16).

• (Section 6.4) How does uniform quantization (with vary-
ing bit-widths) compare to term quantization (with varying
term budgets) under bit/term sharing? Enforcing sharing
across multiple uniform quantization resolutions leads to
significantly worse model performance (Figure 18).

• (Section 6.5) What is cost (e.g., total runtime, memory
consumption) of Meta Multi-resolution DNN training? Our
proposed Meta Multi-resolution DNN training selects two
sub-models to optimize for every iteration, which leads
to approximately a 2× increase in runtime and memory
consumption compared to training a single model (Table 3).
However, for only a 2× increase, the resulting meta model
can select from one of eight sub-models.

4.2. mMAC System

Description: An mMAC design that inherently supports mul-
tiple resolutions. The mMAC operates on only the non-zero
power-of-two terms in a value. For example, for the value
20 = 000101002, mMAC only operates on the two terms, 24

and 22, corresponding to the two nonzero bits in the value.
Unlike in mMAC, in a conventional MAC, 0 bits above the
least significant 1 bit require processing (e.g., the 0 in the
middle of 101 bitstream for the value 20).

Via our Meta Multi-resolution training regime (Algo-
rithm 1), the weight terms for all lower-resolution sub-models
are shared with higher-resolution sub-models. This term shar-
ing means that it is sufficient to store only the largest sub-
model. Our mMAC system implements an efficient memory
access by storing the term increments in the consecutive mem-
ory entries (Figure 15). Therefore, only a subset of terms are
loaded from the memory when performing inference with a
low-resolution sub-model.
Evaluation: We evaluate the performance of our mMAC sys-
tem in Section 7 using a Xilinx VC707 FPGA evaluation board.
We consider the following questions:
• (Section 7.1) How does the mMAC design compared to

conventional bit-serial MAC (bMAC) and bit-parallel MAC
(pMAC) on FPGA energy efficiency? mMAC achieves a
3.1× and 5.6× higher energy efficiency on average across
term-pair budgets than bMAC and pMAC, respectively.

• (Section 7.2) How well does the mMAC system support
a wide range of term-pair budgets in terms of latency and
energy efficiency? For MobileNet-V2, the processing la-
tency reduces by 2.7× and the energy efficiency increases
by 2.5×, as the term-pair budget γ decreases from 60 to
16 (Figure 20). This shows that our mMAC system can
efficiently adjust its computational cost based on γ .

• (Section 7.3) For a fixed-resolution setting, how does the
mMAC system compare to other FPGA designs? On av-
erage, our system outperforms the other designs by 1.7×
and 3.28× in terms of the processing latency and energy
efficiency, while achieving a high classification accuracy.

5. Key Results and Contributions

Key Empirical Results:
• The multi-resolution paradigm allows a single meta model

with multiple sub-model settings (up to 8 in this paper),
with only moderately reduced performance compared to
training them individually (Figure 15).

• Via term quantization, the multi-resolution paradigm can
have the required flexibility to achieve high performance
across a wide range of settings (Figure 18).

• The mMAC approach broadens the set of opportunities in
trading off in cost, efficiency, and latency across a range
of term-pair budgets (Table 2 and Figure 20) compared to
conventional MAC designs.

Key Contributions:
• A multi-resolution hardware system with mMAC for sup-

porting field-configurable multi-resolution DNN inference.
The mMAC computes the dot products by processing only
the non-zero terms in weight and data values.

• A multi-resolution training paradigm for efficient joint
training of a single meta multi-resolution model capable
of spawning multiple sub-models that share power-of-two
terms. The method uses a teacher-student approach to train
two sub-models at each iteration.

• Sub-model configuration at inference to meet the current
resource constraints by simply adjusting the number of
leading terms to use in learned weights of the meta model.

6. Why ASPLOS

ASPLOS showcases novel system architecture support on mul-
tidisciplinary research covering software design and hardware
implementation. Multiple works published in ASPLOS have
focused on hardware/software co-design for efficient DNN
inference [8, 4, 6, 2, 9]. Our work proposes a full-stack archi-
tecture approach to support multi-resolution inference which
can adapt to various deployment scenarios. As our work has
both a strong architectural component (mMAC system) and
model design component (multi-resolution training), we be-
lieve it fits the multidisciplinary nature of ASPLOS.

7. Citation for Most Influential Paper Award

“Field-Configurable Multi-resolution Inference” is the pioneer-
ing work on multi-resolution DNN deployment. Via term
quantization, the work demonstrates that a single meta model
can spawn sub-models of varying resolutions with low system
overheads and minimal performance loss.
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