Streamline: A Fast, Flushless Cache Covert-Channel Attack
by Enabling Asynchronous Collusion

Gururaj Saileshwar
gururaj.s @gatech.edu
Georgia Tech

1. Motivation - Cache Covert Channels

Covert-channels allow malicious processes to collude and com-
municate with each other without detection. Among hardware
covert-channels, cache covert-channels are one of the fastest
and most robust channels. These channels emanate from the
timing difference between accesses to processor caches (tens
of ns) and DRAM (~100 ns). As caches are shared between
multiple processes and cores, a sender process can covertly
transmit information to a co-running receiver process, by influ-
encing whether a (read-only) address shared with the receiver
process is in the cache or not, and modulate the latency ob-
served by the receiver for accessing the address. Such read-
only sharing of addresses is possible via shared-libraries or via
OS de-duplication (e.g. Linux KSM). Cache covert channel
attacks have been heavily exploited in several recent attacks
including Spectre [2], Meltdown [4], etc.

To understand the potential for information leakage via
caches, it is important to bound the bit-rate for cache covert-
channel attacks. Towards this goal, this paper focuses on
understanding the limitations of existing attacks and designing
new attacks that can achieve higher bit-rates than the state-
of-the-art. Our default focus is on cross-core cache attacks,
where a malicious sender and a receiver process execute on
two different processor cores and attempt covert communi-
cation via accesses to the shared LLC (a setting typical for
a virtualized environment with per-core resource allocation),
although our attack is generally applicable even to a same-core
setting (sender and receiver running on the same core).

2. Limitations of State-of-the-Art Attacks

The current fastest cross-core covert-channels are flush-based
attacks, such as Flush+Reload [8] and Flush+Flush [1]. In
these attacks (shown in Fig 1), the sender and receiver operate
synchronously and transmit information in each bit-period
epoch using the timing difference between cache hits and
misses on a read-only shared address. The sender, in each
bit-period epoch, executes a load to an address if the bit to be
sent is 0, else it skips the load. The receiver in each bit-period,
executes a load (or a c1flush) to the address measuring its
latency — and uses the difference in latency to decode the bit
transmitted by the sender. The sender and receiver both wait
till the end of a bit-period to ensure the other has finished
its operations, typically synchronizing using rdt scp that pro-
vides both a shared notion of time, before communicating the
next bit using the same address. Gruss et al. [1] showed these

Christopher W. Fletcher
cwiletch@illinois.edu
University of Illinois, Urbana-Champaign

Moinuddin K. Qureshi
moin @ gatech.edu
Georgia Tech

Sender Receiver-FR Receiver-FF Receiver-TW
foreach(bit) foreach(bit) foreach(bit) foreach(bit)
{ { { {
if(bit==0) | ¢ = rdtscp t = rdtscp t = rdtscp
load(x) load(x) clflush(x) load(x_conflict)
wait(end- T = rdtscp-t T = rdtscp-t T = rdtscp-t
ePOCh) | it Te1imit?70: 1 bit=T<1imit?0:1 bit=T<limit?1:0
i clflush(x) wait (end-epoch); wait(end-epoch)
wait (end-epoch) } }
}
(a) Flush+Reload | (b) Flush+Flush : (c) Take-a-Way
Epoch-size = 3 Ops | Epoch-size =2 Ops | Epoch-size =2 Ops
(1 S-Load + (1 S-Load + (1 S-Load +
1 R-Load+1 R-Flush) 1 R-Flush) 1 R-Load)
Figure 1: All existing covert-channel attacks operate the

sender and receiver synchronously, where they transmit each
bit in a synchronized epoch, and wait till the epoch ends be-
fore transmitting the next bit. The epoch-size also needs to be
large enough to execute 2-3 operations (a load from a sender
(S) and one or two operations from the receiver (R)) to avoid
errors and subsequent channel breakdown.

attacks achieve bit-rates of 298 KB/s (Flush+Reload) and 496
KB/s (Flush+Flush) at <1% bit-error-rate. Take-a-way [3], an
attack with a similar synchronous construction is the fastest
same-core attack, with a bit-rate of 588 KB/s.

All of the existing attacks face two key limitations that pre-
vent them from being faster and more universally applicable:

¢ Bandwidth Limited by Synchronous Communication:
The bit-rate of all existing attacks is bottlenecked by the
requirement of synchronous transfer of bits. The operations
to encode and decode a bit and reset the channel for each
bit, all need to be completed for a current bit by the sender
and receiver, before the next bit can be communicated. Ad-
ditionally, the synchronous window for each bit (epoch-size
in Figure 1) has to be large enough to accommodate two
or three operations. Any attempt to decrease the window
results in loss of synchronization, and in channel breakdown.

Limited Applicability Based on ISA/Microarchitecture:
State-of-the-art attacks exploit features only present in a
specific ISA or micro-architecture and have limited appli-
cability. Flush+Reload and Flush+Flush require cacheline
flush instruction whose unprivileged usage is permitted in
x86 but not in ARM ISA by default (it is simply unavailable
in ARMv7). Take-a-way exploits L1-cache way-prediction
known to be only in AMD processors, making it infeasible
on other CPUs. More generic attacks like Prime+Probe [5]
are at least 7x slower than the fastest attacks.

Sender Receiver

uint8 t arr[len] uint8 t arr[len]

sleep (delayed start)
foreach (bit 1) {

if (bit i== 0) £ - rdt -

load (sarr[64* (i++) $len]) © ~ rdtscp

} load(&arr[64* (i++) $1len])
T = rdtscp - t
bit i = T<thresh?0:1
}

foreach(bit_1i){

Accessed By
[Sender
Receiver

Sender Shared Array

Receiver

o]

Self-Evicting
Cache Thrashing
Access Pattern

o——o—oco—o

(a) Streamline Attack Algorithm

(b) Access Pattern of Sender and Receiver to Shared Array

Figure 2: Overview of the Streamline Attack. The sender and receiver communicate asynchronously via accesses to a shared
array arr (larger than the LLC). The sender keeps transmitting on sequential entries of the array, without waiting for the receiver
to decode. By the time the sequential access wraps around to the start of the array, the entries accessed in the previous iteration
are evicted from the LLC due to the cache-thrashing access pattern.

Our goal is to design a fast attack that is also widely applica-
ble to processors of all architectures and micro-architectures.
Such an attack should not require cacheline flushes. At the
same time, to be faster than current attacks, it must not re-
quire the sender and receiver to execute their operations syn-
chronously. To that end, we design Streamline, our cache
covert-channel attack, to be fast, flush-less, and asynchronous.

3. Key Insights of Streamline Attack

The key idea of our attack is to have the sender and receiver
communicating asynchronously over a large number of lines,
by using the cache to buffer data between the sender and the
receiver, and rely on cache thrashing to naturally evict the
resident lines previously used for communication (instead of
expensive c1flush operations). Our protocol is the following:

* The sender and receiver share a large array, few tens of MBs
in size (larger than LLC size) rather than a single [1,8], or a
small number of addresses [3, 6] like prior attacks; succes-
sive bits are transmitted over a predetermined sequence.

* The sender transmits on successive addresses without wait-
ing for the receiver; the receiver follows behind accessing
the same addresses in a streamlined manner, as in Figure 2.

* The encoding is similar to prior works: the sender accesses
an address to transmit Bit-0 and skips it to for Bit-1; the re-
ceiver infers Bit-0/Bit-1 based on if it gets an LLC-Hit/Miss.

o If the array is much larger than LLC, by the time the sender
wraps around to the start of the array, addresses from the pre-
vious iteration are automatically evicted via cache-thrashing.

Streamline is faster than prior state-of-the-art as: (a) it is
asynchronous (the sender does not wait for the receiver on
every bit), and (b) it only requires a load per bit (no flushes).
However, to orchestrate Streamline at low error-rates, we ad-
dress two key challenges unique to asynchronous protocols:

Challenge-1. Ensuring the sequence of addresses occupies
a significant fraction of the cache: Otherwise, successive ad-
dresses installed by the sender may evict previous addresses be-
fore the receiver accesses them, causing errors. We also work
around hardware optimizations like LLC replacement policy

(that can preemptively evict addresses) and the prefetcher (that
can preemptively install lines) that can disrupt the channel.

Challenge-2. Tolerating rate-mismatch in sender and re-
ceiver: For an asynchronous protocol, any mismatch in the
sender and receiver rates can breakdown the channel. We
develop techniques to both reduce the mismatch, like pseudo-
random channel encoding, and tolerate potential mismatch
with coarse-grain synchronization (once every 200,000 bits),
enabling a robust channel that can transmit billions of bits.

Table 1: Prior Cache Covert Channels (Bit-Rate>50 KB/s)

Attack . Bit
Attack Model Bit-Rate | o ror Rate
Take-a-way [3] Same-Core 588 KB/s 1-3%
Flush+Flush [1] Cross-Core 496 KB/s 0.84%
Prime+Probe (L1) [6] Same-Core 400 KB/s -
Flush+Reload [1] Cross-Core 298 KB/s 0%
Prime+Probe (LLC) [5] | Cross-Core 75 KB/s 1%
Xiaong and Szefer [7] Same-Core 72 KB/s <2%

0.33%

Streamline (this work) ‘ Cross-Core ‘ 1788 KB/s

4. Key Results and Contributions

1. To our knowledge, we are the first to propose a high-
bandwidth covert channel without relying on bit-level syn-
chronization. Our Streamline attack, uses the entire cache
to buffer data between sender and receiver, and uses thrash-
ing to naturally evict data from the cache post transmission.

2. We overcome several obstacles for high-bandwidth attacks,
circumventing LLC optimizations (prefetcher and replace-
ment policy) and rate-mismatch in sender and receiver.

3. We demonstrate Streamline on an Intel Skylake CPU in
a cross-core setting, with a bit-rate of 1788 KB/s and bit-
error-rate of 0.3%. Our bit-rate is 3.6x that of Flush+Flush
(496 KB/s), the prior-best cross-core attack, and 3x that of
Take-a-Way (588 KB/s), the prior-best same-core attack.

4. We discover a fundamental limitation in existing load-
latency measurement gadgets, that prevents latency mea-
surement of multiple loads in parallel and limits bit-rate of
Streamline (and any future attacks attempting to go faster).

References

[1] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan Man-
gard. Flush+ Flush: a fast and stealthy cache attack. In International
Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment, pages 279-299. Springer, 2016.

Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss,
Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas
Prescher, et al. Spectre attacks: Exploiting speculative execution. In
2019 IEEE Symposium on Security and Privacy (SP), pages 1-19. IEEE,
2019.

Moritz Lipp, Vedad HadZi¢, Michael Schwarz, Arthur Perais, Clémen-
tine Maurice, and Daniel Gruss. Take a way: Exploring the security
implications of amd’s cache way predictors. In Proceedings of the
2020 ACM Asia Conference on Computer and Communications Security,
2020.

Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner
Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel
Genkin, et al. Meltdown: Reading kernel memory from user space. In
27th USENIX Security Symposium (USENIX Security 18), pages 973—
990, 2018.

[5] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B Lee.
Last-level cache side-channel attacks are practical. In 2015 IEEE Sym-
posium on Security and Privacy (SP), pages 605-622. IEEE, 2015.
Colin Percival. Cache missing for fun and profit. In Proceedings of
BSDCan, 2005.

[7]1 Wenjie Xiong and Jakub Szefer. Leaking information through cache lru
states. In 2020 IEEE International Symposium on High Performance
Computer Architecture (HPCA), pages 139-152. IEEE, 2020.

Yuval Yarom and Katrina Falkner. FLUSH+ RELOAD: a high resolution,
low noise, L3 cache side-channel attack. In 23rd USENIX Security
Symposium (USENIX Security 14), pages 719-732, 2014.

[2

—

3

—

[4

=

[6

[t

[8

[t

	Motivation - Cache Covert Channels
	Limitations of State-of-the-Art Attacks
	Key Insights of Streamline Attack
	Key Results and Contributions

