
PMEM-Spec: Persistent Memory Speculation
(Strict Persistency Can Trump Relaxed Persistency)

Jungi Jeong and Changhee Jung

Purdue University

1. Motivation
Persistency models govern the order in which stores update
persistent memory (PM). As with memory consistency, the
relaxed persistency models provide better performance than
the strict models by relaxing the ordering constraints, such as
allowing reordering within an epoch [2,8,13,16] or a strand [3,
15]. However, the higher performance comes at the cost of
program annotation and hardware complexities [3, 11, 13].
Programmers must reason about the persist-order and insert
new instructions such as fence/barrier to where they should
be to ensure the order. Then, hardware modifications follow
to enforce the persist-order specified in programs, e.g., prior
research proposals employ a special buffer alongside the L1
cache to govern the persist-order, as shown in Figure 1 in the
full paper.

The current PM research trend recalls the advent of relaxed
consistency models such as TSO for addressing SC’s poor
performance and scalability. For example, TSO relaxes the or-
dering constraints, such as write-after-write dependency, of SC
and delegates programmers to ensure the correctness and place
ordering primitives. Likewise, previous studies of relaxed per-
sistency models place additional burdens on programmers and
hardware to achieve higher system throughput.

This reminiscence drives us to rethink how hardware sup-
port should shape persistency models. Our goal is to devise a
hardware-software codesign that simultaneosly achieves high
throughput and less hardware/programming complexity.

2. Limitations of the State of the Art

2.1. Intrusive Hardware Extensions

Prior solutions require intrusive modifications on the core and
cache hierarchy to enforce the intra-thread and inter-thread
persist-order [3, 11, 13]. First, they place a buffer next to the
L1 cache to keep dirty cache blocks before flushing them to
PM. This buffer governs the intra-thread persist-order. More-
over, they monitor the coherence messages in the L1 cache to
identify inter-thread dependency. However, it becomes chal-
lenging when L1 caches evict dirty cache blocks to the shared
cache before flushing to PM. In this case, they cannot track the
dependency only with L1 cache coherence messages, violating
the inter-thread persist-order.

Although previous work proposed novel solutions, they
come at the cost of hardware complexity. For example, DPO
incorporates the persist buffers into the cache coherence do-
main [11]. HOPS employs the sticky-M state [13], keeping

the cache lines ownership to the private cache where it resided
before eviction. StrandWeaver postpones removing the dirty
block from the L1 cache until the corresponding block in
the strand-buffer flushes to PM [3]. Moreover, StrandWeaver
introduces a persist queue in a core to handle PM-related in-
structions and the overflow of a store queue, which stalls the
pipeline.

These extensions increase hardware complexity in not only
the cache hierarchy but the core. On the other hand, we pro-
pose a non-intrusive implementation that modifies neither the
core nor the cache hierarchy.

2.2. Instrumenting Persist-Orders

Programmers must instrument ordering primitives in the pro-
gram based on the target relaxed persistency model [3, 13].
Based on the persist-order specified in program, hardware can
relax the ordering constraints and exploit higher concurrency.
However, this approach has a significant drawback. Instru-
menting the persist-order in program increases the program-
ming complexity. This often requires a deep understanding
of program semantics to insert ordering primitives into the
desired places. Otherwise, naive instruments may not fully
exploit concurrency in program, resulting in suboptimal per-
formance due to the hardware underutilization.

On the other hand, hardware support for strict persistency
models does not add custom ISAs to instrument the persist-
order [11]. For example, DPO can run the epoch-based per-
sistency model with the Intel X86 ISA without modification.
However, this approach may show a relatively poor perfor-
mance compared to the relaxed model with custom ISAs.

We aim to design hardware support that is transparent to
software and minimizes the burden on programmers. Mean-
while, we tackle the presumption that a strict persistency
model would show lower performance than the relaxed mod-
els by demonstrating the opposite.

3. Key Insights of PMEM-Spec

3.1. Bypass the Caches

The first insight is to bypass the caches. CPU caches are
critical to compensate for PM access latency. However, they
also deteriorate persistence and increase hardware complexity
by reordering data writebacks to PM. Therefore, this paper
proposes a separate data-path—bypassing the cache hierarchy
for PM stores— that directly connects the store-queue to the
PM controller. PM stores update both caches and PM through



the persist-path simultaneously while the PM controller drops
dirty cache block without updating PM.

This design decision brings two advantages over the previ-
ous solutions.
• CPUs and caches remain unmodified since the persist-path

bypasses the cache hierarchy, significantly reducing the hard-
ware complexity.

• The persist-path pushes data being stored—immediately
when the store instruction commits—from the store-queue
to the persist-path; it guarantees that PM stores happen in
the commit-order.

• This guarantee removes ordering primitives in programs,
such as CLWB & SFENCE between log and data operations,
simplifying the programming model.

The persist-path makes the persist-order equal to volatile mem-
ory order, rendering PMEM-Spec a strict persistency model.

3.2. Speculate PM Accesses

The second insight is to speculate PM accesses as they (al-
most) always obey the ordering constraints. Previous studies
control cache-flushes in the L1 cache to enforce the persist-
order. On the other hand, PMEM-Spec removes buffers in
the cache hierarchy and the core but allows PM accesses in
any order as they appear to PM. If the ordering violation (e.g.,
misspeculation) happens, it should be properly handled for
correctness, which leads to the third insight.

3.3. Recover from Misspeculation

We consider misspeculation as a power failure. Since per-
sistent applications support the failure-atomicity via soft-
ware [1, 5, 6, 10, 12, 17] or hardware [4, 7, 9, 14], we take
advantage of them to recover from misspeculation. Upon
detecting misspeculation, the proposed design immediately
traps the operating system to notify it of a virtual power fail-
ure. Then, it signals the failure-atomic runtime to abort all
threads and recover from the virtual power failure. Once the
recovery runtime completes, the program restarts from the last
consistent state.

4. PMEM-Spec Details

4.1. Why Misspeculation Occurs

The data race between the regular (e.g., caches) and persist-
paths can cause the ordering violation. First, PM load mis-
speculation occurs when a load arrives at the PM controller
earlier than stores to the same memory address while stores
appear before the load in the program order. This violation
ends up fetching the stale value from PM, violating the mem-
ory consistency model. Second, the latency disparity between
persist-paths may result in PM store misspeculation if inter-
thread dependency exists. Stores of different threads to the
same block can arrive out of order at the PM-side. The out-of-
order arrival violates the inter-thread dependency.

4.2. Misspeculation Detection

We observe that misspeculation can happen with a data race
between data-paths. Therefore, speculative access becomes
considered safe after the worst-case data-path latency, which
we call the speculation window.

To detect PM load misspeculation, PMEM-Spec proposes
eviction-based monitoring for recently evicted blocks from
LLC since PM load misspeculation never occurs when the
block is present in caches. Suppose PMEM-Spec detects that
stores overwrite the block recently evicted from caches and
fetched by the load within the speculation window. Here, it
turns out that the load had a stale value (e.g., misspeculation).
Furthermore, PMEM-Spec exploits the happens-before order,
dynamically established at run time, to detect PM store mis-
speculation. To achieve this, our compiler annotates a critical
section to assign the speculation ID to each thread that en-
ters therein. That way, PMEM-Spec monitors incoming data
from the persist-path and identifies the inter-thread ordering
violation when it receives a lower ID than the previous one.

5. Key Results and Contributions

In our experiments, PMEM-Spec outperforms the epoch-based
persistency model with Intel X86 ISAs and the state-of-the-art,
HOPS [13], by 27.2% and 10.6%, respectively.

PMEM-Spec makes the following contributions:
• We show how an efficient architecture/OS/compiler interac-

tion achieves a high-performance strict persistency at a low
hardware cost with a minimal program change. For the first
time, we demonstrate that the strict persistency (PMEM-
Spec) can outperform the relaxed persistency (HOPS).

• We devise the decoupled persist-path that bypasses the cache
hierarchy by directly connecting the CPU store queue to the
PM controller. The separate persist-path simplifies the intra-
thread persist-order by sending stores in order.

• We propose persistent memory speculation to avoid CPU
stalls, obviating the need to wait for data writebacks through
the persist-path. Also, we classify how misspeculation hap-
pens and devise a lightweight yet effective scheme to detect
them. Misspeculation turns out to be rare, and thus delegat-
ing the misspeculation handling to software does not impose
a significant slowdown.

6. Why ASPLOS

This paper proposes a hardware-software codesign solution
that uniquely addresses the ordering violation observed in hard-
ware support for persistency models. Our solution, PMEM-
Spec, identifies the ordering violation in hardware but corrects
it with software support. In particular, our study showcases the
highly synergistic effect of architecture, OS, and compilers for
addressing the problems of prior work on persistent memory,
which perfectly fits ASPLOS emphasizing multidisciplinary
research.

2



References
[1] Dhruva R. Chakrabarti, Hans-J. Boehm, and Kumud Bhandari. Atlas:

Leveraging locks for non-volatile memory consistency. In Proceedings
of the ACM International Conference on Object Oriented Programming
Systems Languages & Applications, OOPSLA, 2014.

[2] Jeremy Condit, Edmund B. Nightingale, Christopher Frost, Engin
Ipek, Benjamin Lee, Doug Burger, and Derrick Coetzee. Better i/o
through byte-addressable, persistent memory. In Proceedings of the
ACM SIGOPS Symposium on Operating Systems Principles, SOSP,
2009.

[3] Vaibhav Gogte, William Wang, Stephan Diestelhorst, Peter M. Chen,
Satish Narayanasamy, and Thomas F. Wenisch. Relaxed persist order-
ing using strand persistency. In Proceedings of the ACM/IEEE Annual
International Symposium on Computer Architecture, ISCA, 2020.

[4] Siddharth Gupta, Alexandros Daglis, and Babak Falsafi. Distributed
logless atomic durability with persistent memory. In Proceedings of
the Annual IEEE/ACM International Symposium on Microarchitecture,
MICRO, 2019.

[5] Swapnil Haria, Mark D. Hill, and Michael M. Swift. Mod: Minimally
ordered durable datastructures for persistent memory. In Proceedings
of the International Conference on Architectural Support for Program-
ming Languages and Operating Systems, ASPLOS, 2020.

[6] Terry Ching-Hsiang Hsu, Helge Brügner, Indrajit Roy, Kimberly Kee-
ton, and Patrick Eugster. Nvthreads: Practical persistence for multi-
threaded applications. In Proceedings of the European Conference on
Computer Systems, EuroSys, 2017.

[7] Jungi Jeong, Chang Hyun Park, Jaehyuk Huh, and Seungryoul Maeng.
Efficient hardware-assisted logging with asynchronous and direct-
update for persistent memory. In Proceedings of the Annual IEEE/ACM
International Symposium on Microarchitecture, 2018.

[8] Arpit Joshi, Vijay Nagarajan, Marcelo Cintra, and Stratis Viglas. Effi-
cient persist barriers for multicores. In Proceedings of the International
Symposium on Microarchitecture, MICRO, 2015.

[9] Arpit Joshi, Vijay Nagarajan, Stratis Viglas, and Marcelo Cintra. Atom:
Atomic durability in non-volatile memory through hardware logging.
In Proceedings of the IEEE International Symposium on High Perfor-
mance Computer Architecture, 2017.

[10] Aasheesh Kolli, Steven Pelley, Ali Saidi, Peter M. Chen, and Thomas F.
Wenisch. High-performance transactions for persistent memories. In
Proceedings of the International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS, 2016.

[11] Aasheesh Kolli, Jeff Rosen, Stephan Diestelhorst, Ali Saidi, Steven
Pelley, Sihang Liu, Peter M. Chen, and Thomas F. Wenisch. Delegated
persist ordering. In Proceeding of the Annual IEEE/ACM International
Symposium on Microarchitecture, MICRO, 2016.

[12] Qingrui Liu, Joseph Izraelevitz, Se Kwon Lee, Michael L. Scott, Sam H.
Noh, and Changhee Jung. Ido: Compiler-directed failure atomicity
for nonvolatile memory. In Proceedings of the Annual IEEE/ACM
International Symposium on Microarchitecture, MICRO, 2018.

[13] Sanketh Nalli, Swapnil Haria, Mark D. Hill, Michael M. Swift, Haris
Volos, and Kimberly Keeton. An analysis of persistent memory use
with whisper. In Proceedings of the International Conference on
Architectural Support for Programming Languages and Operating
Systems, ASPLOS, 2017.

[14] Matheus A. Ogleari, Ethan L. Miller, and Jishen Zhao. Steal but no
force: Efficient hardware undo+redo logging for persistent memory
systems. In Proceeding of the IEEE International Symposium on High
Performance Computer Architecture, 2018.

[15] Steven Pelley, Peter M. Chen, and Thomas F. Wenisch. Memory
persistency. In Proceeding of the Annual International Symposium on
Computer Architecuture, ISCA, 2014.

[16] Seunghee Shin, James Tuck, and Yan Solihin. Hiding the long latency
of persist barriers using speculative execution. In Proceedings of the
Annual International Symposium on Computer Architecture, ISCA,
2017.

[17] Haris Volos, Andres Jaan Tack, and Michael M. Swift. Mnemosyne:
Lightweight persistent memory. In Proceedings of the International
Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS, 2011.

3


	Motivation
	Limitations of the State of the Art
	Intrusive Hardware Extensions
	Instrumenting Persist-Orders

	Key Insights of PMEM-Spec
	Bypass the Caches
	Speculate PM Accesses
	Recover from Misspeculation

	PMEM-Spec Details
	Why Misspeculation Occurs
	Misspeculation Detection

	Key Results and Contributions
	Why ASPLOS

