
PMFuzz: Test Case Generation for Persistent Memory Programs

Sihang Liu†*, Suyash Mahar¶∗, Baishakhi Ray‡, and Samira Khan†
†University of Virginia ¶ University of California, San Diego ‡Columbia University

1. Background and Motivation

Persistent memory (PM) technologies, such as Intel’s Op-
tane [12], provide a class of high-performance and byte-
addressable memory. PM programs directly access persis-
tent data through the memory bus, without using software
intermediaries, blurring the difference between memory and
storage. Programs such as databases [15,17,19] and key-value
stores [3, 13, 27, 28], as well as those that customize persistent
storage [2, 6–8, 11, 23, 26, 29] can significantly benefit from
PM. These programs generally require that the persistent data
in PM can recover to a consistent state in the event of a failure
(e.g., power outage or system crash)—a requirement referred
to as the crash consistency guarantee.

However, due to the reordering and buffering in the volatile
memory hierarchy, writes to PM need to be carefully man-
aged to ensure crash consistency. For example, appending a
node to a persistent linked list requires the node to become
persistent prior to the updated tail pointer that points to the
new node. To prescribe the order in which writes become
persistent, PM hardware platforms have introduced writeback
and fence instructions, such as CLWB and SFENCE in x86 sys-
tems [16]. Building on top of these low-level primitives, there
have been works that provide PM libraries, such as failure-
atomic transactions from Intel’s PMDK [14], that improves
the programmability. Nonetheless, programmers still need to
understand the crash consistency guarantees from the library
and the desired failure-recovery mechanism in their programs.
Prior works pointed out that programming for PM systems
is error-prone [5, 18, 20, 21, 24]. A misuse of PM primitives
or library functions, such as missing CLWB and SFENCE opera-
tions or not backing up data, can break the crash consistency
guarantee, which is referred to as a crash consistency bug.
Whereas, overuse of these functions, such as placing redun-
dant SFENCE’s or creating unnecessary backups, can degrade
the performance, which is referred to as a performance bug.

Existing tools detect these PM bugs [5, 18, 20–22] by trac-
ing low-level PM operations and checking whether the traces
violate the persistence and ordering guarantees to ensure
crash consistency. However, these tools detect a bug only
when the buggy procedure is executed. They will miss the
bug if the buggy path is not executed during testing. Fig-
ure 1 shows a B-Tree derived from one of the PMDK exam-
ples [14]. The code snippet shows a function that removes
a node in the tree and then rebalances the tree after removal.
To ensure crash consistency, it wraps the transaction proce-
dure with a pair of TX_BEGIN and TX_END, and logs PM ob-

*Equal contribution. Suyash Mahar contributed to this work during his
internship at the University of Virginia.

void btree_remove(node_t* node){
 TX_BEGIN{
 ... // remove a node
 if (!parent && node->n<BTREE_MIN)
 bree_rebalance(...);
 }TX_END
}
void btree_rebalance(...){
 node_t* lsb=parent->slots[p-1];
 if(lsb && lsb->n > BTREE_MIN)
 rotate_left(lsb, node,parent,p);
}

void rotate_left(...){
 ...
 TX_ADD(node);
 btree_insert(node,0,...);
 TX_ADD_FIELD(parent,items[p]);
 parent->items[p-1]=...;
 ...
}
void btree_insert(...){
 if (node->items[p].key){
 TX_ADD(node);
 memmove(&node->items[p + 1],
 &node->items[p],size);
 } ...
}

1
2
3
4
5
6
7
8
9

10
11
12

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

Need to satisfy multiple conditions

Performance bug:
No need to log twice

Crash consistency bug:
Wrong index logged

Figure 1: A buggy PM-based B-Tree

Empty PM Image

Input Commands 1

PM
Program PM Image 1

(Normal Image)
PM Image 2

(Crash Image)

Input Commands 2

PM
Program

(a) (b)

Figure 2: PM program execution procedures that generate
(a) a normal image, and (b) a crash image.

jects through TX_ADD()/TX_ADD_FILED(). After removing
a tree node, the program tries to rebalance the tree by call-
ing btree_rebalance() that performs btree_rotation()
and btree_insert(). We place to synthetic bugs to this ex-
ample as indicated by the red arrows: A crash consistency bug
at line 17 where the transaction logs a wrong item, and a per-
formance bug at line 23 where the transaction logs the same
item twice. Even though existing testing tools are capable
of detecting these types of bugs, they require a test case that
triggers a specific series of if-conditions during the execution,
as indicated by the blue arrows. Thus, to effectively expose
the PM bugs, we need a test case generator that generates test
cases and explore the buggy program paths.

2. Test Case Generation for PM Programs
Due to the already complicated programming for PM systems,
a test case generator ideally should not introduce additional
programmer’s effort. Fuzzing, a test case generation method,
perfectly meets this need—it is effective but only requires
minimum knowledge about the program [1, 4, 9, 10, 30]. At a
high-level, a fuzzer iteratively mutates existing test cases to
generate new ones and keeps executing the program with the
new test cases. We identify that additional requirements need
to be met to efficiently generate test cases for PM programs.

Requirement 1: PM Image as Input. First, PM programs
maintain the persistent data using PM devices, where the per-
sistent state is first manipulated by the program and remains
after program termination. Typically, this is achieved by main-
taining a PM image in a DAX file system [25]. Therefore, a
PM program takes not only executes regular program inputs
(e.g., a command that inserts a key-value pair) but also takes
an existing persistence state maintained by PM image(s) , as
described in Figure 2a. As the procedure of loading an existing
PM image may also lead to crash consistency bugs [18, 20], it

1

is necessary for a fuzzer to generate test cases containing PM
images. Conventional fuzzers are able to generate the regular
input commands but are ineffective in generating PM images.
Performing mutation within a large search space of an image
(at least tens of MBs) is inefficient. And, as PM programs typi-
cally customize data layout in the PM image, a direct mutation
is also likely to generate invalid PM images. For example, a
PM image with illegal pointers can cause program to abort
during initialization without exploring any useful path.

Requirement 2: Crash Image as Input. A PM image can
also be a result of a procedure interrupted by a failure, as
demonstrated in Figure 2b. We refer to PM images generated
by a normal, uninterrupted procedure as normal images, and
those caused by crashes as crash images. As required by the
crash consistency guarantee, PM programs are also expected
to recover from such crash images. Therefore, besides the
normal images, the fuzzer also needs to generate crash images
for a thorough testing. However, the difficulty is that failures
can occur at any point during execution, leading to an infinite
number of crash images.

Requirement 3: Targeting PM Operations. PM programs
may contain procedures for different purposes, not limited to
PM-related procedures, especially in large real-world appli-
cations. On the other hand, only PM operations are critical
to crash consistency bugs, such as PM writes that modify the
state, and PM reads that loads an existing state [20]. However,
conventional coverage metrics adopted by existing fuzzers are
not specific to PM operations. For example, the widely used
statement coverage metric treats each code region evenly as it
optimizes for covering more lines of code. Thus, the existing
fuzzers are not efficient in generating test cases that cover PM
operations which are most critical to crash consistency bugs.
Therefore, an efficient fuzzer for PM programs is required to
target PM operations.

3. Key Insights

Given the above requirements, existing fuzzers are insufficient.
Here, we introduce PMFuzz, a new fuzzing tool that generates
test cases to detect crash consistency and performance bugs in
PM programs. Next, we describe our high-level ideas.

Efficient PM Image Generation. An effective fuzzer
should generate valid PM images. Despite the difficulties
in direct mutation, we observe that different PM images are
essentially outcomes of the program execution with different
input commands. Therefore, our key idea is to use the program
itself to mutate an existing PM image. PMFuzz incrementally
generates the PM image by fuzzing the input commands that
modify the images. As the fuzzing procedure continues, the
PM image will eventually be holistically mutated.

Prioritizing Important Crash Images. Even though fail-
ure can occur at any point during execution, we observe that
the recovery procedure typically depends on a few key data

blocks in the crash image. In an undo-logging mechanism, the
program performs the following steps: back up the old data,
set the valid bit of the undo log, perform in-place update, and
finally unset the valid bit. In case of a failure, the recovery
code checks the valid bit to determine whether the undo log or
the in-place update has the consistent data. Therefore, to cover
both the path that applies the undo log and keeps the in-place
update, only two crash images are necessary—one with valid
being true and another false. Therefore, our key idea is
to minimize the number of crash images by only generating
those that affect the control-flow during failure-recovery.

Targeted Fuzzing for PM Path. PM operations that incor-
rectly manage persistent data lead to PM bugs that we concern.
Thus, to achieve high coverage of these bugs, the fuzzer needs
to perform a targeted fuzzing on program paths that access PM.
To enable this prioritization, we first define the PM path as
a path consisting of program statements with PM operations.
During fuzzing, PMFuzz monitors the statistics of PM path,
and prioritizes test cases that cover new PM paths. By focusing
on PM path, PMFuzz can efficiently generate test cases that
target crash consistency and performance bugs.

4. Main Artifact
This work provides PMFuzz, a fuzzer that automatically gen-
erates high-value test cases to detect crash consistency bugs in
PM programs. The source of PMFuzz is publicly available at:
https://github.com/Systems-ShiftLab/PMFuzz. We
implement PMFuzz on top of a well-known fuzzer, AFL++ [1]
by incorporating our key insights, and evaluate PMFuzz in a
real PM system with common PM programs, including key-
value stores [14] and databases [17, 19].

5. Key Results and Contributions
• PMFuzz is the first fuzzing work that aims to generate test

cases for PM programs.
• PMFuzz is tailored for PM programs by efficiently generat-

ing both normal PM images and crash images, and perform-
ing targeted fuzzing on PM program paths.

• Our evaluation shows that PMFuzz covers an average of
4.6× more PM paths over AFL++, within a 4-hour fuzzing.

• The generated test cases detect 8 new bugs in PM programs
that have already been extensively tested by prior works.

6. Why ASPLOS
PMFuzz generates test cases to test the crash consistency guar-
antee of programs designed for persistent memory systems. It
lies in the areas of systems, architecture, and testing.

7. Citation for Most Influential Paper Award
This paper advanced the testing of persistent memory pro-
grams. It designed and implemented a test case generation
framework to detect crash consistency bugs, by efficiently
generating inputs tailored for persistent memory programs.

2

https://github.com/Systems-ShiftLab/PMFuzz

References
[1] AFLplusplus. American fuzzy lop plus plus (AFL++). https://

aflplus.plus/.
[2] Joy Arulraj, Justin Levandoski, Umar Farooq Minhas, and Per-Ake

Larson. Bztree: A high-performance latch-free range index for non-
volatile memory. Proceedings of the VLDB Endowment, 2018.

[3] Katelin A. Bailey, Peter Hornyack, Luis Ceze, Steven D. Gribble, and
Henry M. Levy. Exploring storage class memory with key value stores.
In Proceedings of the 1st Workshop on Interactions of NVM/FLASH
with Operating Systems and Workloads (INFLOW), 2013.

[4] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury.
Coverage-based greybox fuzzing as markov chain. In Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications
Security (CCS), 2016.

[5] Eduardo Carellan. Discover persistent memory programming errors
with pmemcheck. https://software.intel.com/content/www/
us/en/develop/articles/discover-persistent-memory-
programming-errors-with-pmemcheck.html, 2018.

[6] Shimin Chen and Qin Jin. Persistent B+-Trees in non-volatile main
memory. In Proceedings of the VLDB Endowment, 2015.

[7] P. Chi, W. Lee, and Y. Xie. Adapting B+ -tree for emerging nonvolatile
memory-based main memory. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems (TCAD), 2016.

[8] Nachshon Cohen, David T. Aksun, and James R. Larus. Object-
oriented recovery for non-volatile memory. Proceedings of the ACM
on Programming Languages, (OOPSLA), 2018.

[9] David Drysdale. Coverage-guided kernel fuzzing with syzkaller.
https://lwn.net/Articles/677764/, 2016.

[10] Google. OSS-Fuzz: Continuous fuzzing for open source software.
https://github.com/google/oss-fuzz.

[11] Qingda Hu, Jinglei Ren, Anirudh Badam, Jiwu Shu, and Thomas
Moscibroda. Log-structured non-volatile main memory. In Proceeding
of the USENIX Annual Technical Conference (ATC), 2017.

[12] Intel. Intel Optane DC persistent memory. https:
//www.intel.com/content/www/us/en/architecture-
and-technology/optane-dc-persistent-memory.html.

[13] Intel. Key/value datastore for persistent memory. https://github.
com/pmem/pmemkv.

[14] Intel. Persistent memory programming. https://pmem.io/.
[15] Intel. Code sample: Enable your application for per-

sistent memory with MySQL storage engine. https:
//software.intel.com/content/www/us/en/develop/
articles/code-sample-enable-your-application-for-
persistent-memory-with-mysql-storage-engine.html,
2019.

[16] Intel. Intel 64 and IA-32 architectures software developer’s man-
ual. https://software.intel.com/sites/default/files/
managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf, 2019.

[17] Intel. Redis. https://github.com/pmem/redis/tree/3.2-nvml,
2019.

[18] Philip Lantz, Dulloor Subramanya Rao, Sanjay Kumar, Rajesh
Sankaran, and Jeff Jackson. Yat: A validation framework for persistent
memory software. In Proceeding of the USENIX Annual Technical
Conference (ATC), 2014.

[19] Lenovo. Memcached-pmem. https://github.com/lenovo/
memcached-pmem, 2018.

[20] Sihang Liu, Korakit Seemakhupt, Yizhou Wei, Thomas Wenisch,
Aasheesh Kolli, and Samira Khan. Cross-failure bug detection in
persistent memory programs. In Proceedings of the Twenty-Fifth In-
ternational Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2020.

[21] Sihang Liu, Yizhou Wei, Jishen Zhao, Aasheesh Kolli, and Samira
Khan. PMTest: A fast and flexible testing framework for persistent
memory programs. In Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2019.

[22] Kevin Oleary. How to detect persistent memory programming errors
using Intel Inspector - Persistence Inspector. https://software.
intel.com/content/www/us/en/develop/articles/detect-
persistent-memory-programming-errors-with-intel-
inspector-persistence-inspector.html, 2018.

[23] Diego Ongaro, Stephen M. Rumble, Ryan Stutsman, John Ousterhout,
and Mendel Rosenblum. Fast crash recovery in RAMCloud. In Pro-
ceedings of the ACM Symposium on Operating Systems Principles
(SOSP), 2011.

[24] Jinglei Ren, Qingda Hu, Samira Khan, and Thomas Moscibroda. Pro-
gramming for non-volatile main memory is hard. In Proceedings of
the 8th Asia-Pacific Workshop on Systems (APSys), 2017.

[25] Usharani Upadhyayula. Quick start guide: Provision intel op-
tane dc persistent memory. https://software.intel.com/
content/www/us/en/develop/articles/quick-start-guide-
configure-intel-optane-dc-persistent-memory-on-
linux.html, 2019.

[26] Shivaram Venkataraman, Niraj Tolia, Parthasarathy Ranganathan, and
Roy H. Campbell. Consistent and durable data structures for non-
volatile byte-addressable memory. In Proceedings of the 9th USENIX
Conference on File and Stroage Technologies (FAST), 2011.

[27] Xingbo Wu, Fan Ni, Li Zhang, Yandong Wang, Yufei Ren, Michel
Hack, Zili Shao, and Song Jiang. NVMcached: An NVM-based key-
value cache. In Proceedings of the 7th ACM SIGOPS Asia-Pacific
Workshop on Systems (ApSys), 2016.

[28] Fei Xia, Dejun Jiang, Jin Xiong, and Ninghui Sun. HiKV: A hybrid in-
dex key-value store for DRAM-NVM memory systems. In Proceedings
of the USENIX Conference on Usenix Annual Technical Conference
(ATC), 2017.

[29] Jun Yang, Qingsong Wei, Cheng Chen, Chundong Wang, Khai Leong
Yong, and Bingsheng He. NV-Tree: Reducing consistency cost for
NVM-based single level systems. In Proceedings of the 13th USENIX
Conference on File and Storage Technologies (FAST), 2015.

[30] Michal Zalewski. American fuzzy lop. https://lcamtuf.
coredump.cx/afl/.

3

https://aflplus.plus/
https://aflplus.plus/
https://software.intel.com/content/www/us/en/develop/articles/discover-persistent-memory-programming-errors-with-pmemcheck.html
https://software.intel.com/content/www/us/en/develop/articles/discover-persistent-memory-programming-errors-with-pmemcheck.html
https://software.intel.com/content/www/us/en/develop/articles/discover-persistent-memory-programming-errors-with-pmemcheck.html
https://github.com/google/oss-fuzz
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.com/content/www/us/en/architecture-and-technology/optane-dc-persistent-memory.html
https://github.com/pmem/pmemkv
https://github.com/pmem/pmemkv
https://pmem.io/
https://software.intel.com/content/www/us/en/develop/articles/code-sample-enable-your-application-for-persistent-memory-with-mysql-storage-engine.html
https://software.intel.com/content/www/us/en/develop/articles/code-sample-enable-your-application-for-persistent-memory-with-mysql-storage-engine.html
https://software.intel.com/content/www/us/en/develop/articles/code-sample-enable-your-application-for-persistent-memory-with-mysql-storage-engine.html
https://software.intel.com/content/www/us/en/develop/articles/code-sample-enable-your-application-for-persistent-memory-with-mysql-storage-engine.html
https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
https://github.com/pmem/redis/tree/3.2-nvml
https://github.com/lenovo/memcached-pmem
https://github.com/lenovo/memcached-pmem
https://software.intel.com/content/www/us/en/develop/articles/detect-persistent-memory-programming-errors-with-intel-inspector-persistence-inspector.html
https://software.intel.com/content/www/us/en/develop/articles/detect-persistent-memory-programming-errors-with-intel-inspector-persistence-inspector.html
https://software.intel.com/content/www/us/en/develop/articles/detect-persistent-memory-programming-errors-with-intel-inspector-persistence-inspector.html
https://software.intel.com/content/www/us/en/develop/articles/detect-persistent-memory-programming-errors-with-intel-inspector-persistence-inspector.html
https://software.intel.com/content/www/us/en/develop/articles/quick-start-guide-configure-intel-optane-dc-persistent-memory-on-linux.html
https://software.intel.com/content/www/us/en/develop/articles/quick-start-guide-configure-intel-optane-dc-persistent-memory-on-linux.html
https://software.intel.com/content/www/us/en/develop/articles/quick-start-guide-configure-intel-optane-dc-persistent-memory-on-linux.html
https://software.intel.com/content/www/us/en/develop/articles/quick-start-guide-configure-intel-optane-dc-persistent-memory-on-linux.html
https://lcamtuf.coredump.cx/afl/
https://lcamtuf.coredump.cx/afl/

	Background and Motivation
	Test Case Generation for PM Programs
	Key Insights
	Main Artifact
	Key Results and Contributions
	Why ASPLOS
	Citation for Most Influential Paper Award

