
KLOCs: Kernel-Level Object Contexts for Heterogeneous Memory Systems
Sudarsun Kannan
Rutgers University

Yujie Ren
Rutgers University

Abhishek Bhattacharjee
Yale University

1. Introduction

Emerging computer systems combine the best properties of
memory technologies optimized for latency, bandwidth, capac-
ity, persistence and offer better performance, energy-efficiency,
and cost trade-offs [3, 10, 11, 13, 16, 19]. However, prior
research has demonstrated the challenge of data allocation
and migration in multi-socket non-uniform memory access
(NUMA) architectures [4,5,7,15,17,21]. Heterogeneous mem-
ory systems amplify this challenge by integrating memory de-
vices with even more varied latency and bandwidth characteris-
tics. Consequently OS-directed data tiering for heterogeneous
memories has become an active research area [9, 12, 17, 23].
Unfortunately, most prior studies focus on application-level
data, ignoring kernel objects. We show that modern I/O-
intensive applications, driven by advances in networking and
storage speeds, require significant memory capacities for ker-
nel objects. Modern OSes, designed for the days when kernel
object memory usage was relatively low, leave as much as 4⇥
performance on the table due to poor tiering decisions.
Challenges. OS-controlled kernel object tiering requires
solutions to: (1) the absence of OS abstractions/mechanisms
to efficiently group kernel objects, (2) orders of magnitude
shorter lifetimes of kernel objects compared to application
pages, and (3) lack of support for kernel object migration.
Proposed Approach. To overcome these challenges, we
introduce a new OS abstraction, kernel-level object contexts
(KLOCs), that permits fluid tiering of kernel objects by intro-
ducing a novel mechanism for grouping related kernel objects,
efficiently identifying their hotness and coldness, and enabling
their low-overhead migration when desirable.
Kernel Object Grouping. To solve the challenge of grouping
kernel objects, KLOCs capture groups of kernel objects asso-
ciated with OS entities requested by applications. The kernel
entities requested by applications are files and sockets, while
the kernel objects range from structures associated with files
(e.g., inodes, blocks, extents, etc.) to those associated with
sockets (e.g., packet buffers, headers, data buffers, etc.). Our
proposed abstraction exploits the fundamental Unix-based "ev-
erything is a file" abstraction and maintains a KLOC for each
file and socket entity, and groups all kernel objects allocated
and used to serve requests to these entities.
Kernel Object Hotness Tracking and Migration. KLOCs offer
a principled way to tame this diverse ecosystem of kernel ob-
jects and enable quick determination of their hotness/coldness
instead of relying on expensive hotness scan across the entire
address space. When the OS determines that an inode has be-
come cold (because, for example, the file or socket associated
with the inode has been closed), the data structures used to

kmap

slab tree
journal

block

dentry

extent

request

slab tree
sock

skbuff skbuff data

rx_buf

File KLOC Socket KLOC

knode

page

page-cache 
tree

page page

page

knode

journal

knode

page

…block

Figure 1: All of the kernel objects associated with each active file
and active socket represent individual KLOCs. All the KLOCs in
the system are tracked using a kmap. The inode of each active file
or socket maintains a pointer to a knode data structure, which tracks
associated kernel objects.

implement the KLOC abstraction permit direct identification
of all kernel objects associated with the inode and mark them
as candidates for migration to slow memory.
Implementation and Evaluation. Our implementation us-
ing Linux 4.17 kernel shows that KLOCs improve the per-
formance of I/O-intensive workloads like RocksDB, Redis,
Cassandra, and Spark over the state-of-the-art application tier-
ing (Nimble [23]) by up to 2.7⇥ on a two-tier memory system,
and 1.4⇥ on a multi-socket Intel Optane system.

2. Motivation

To manage a heterogeneous mix of memory devices, recent
studies have focused on software and hardware techniques.
Software approaches rely on tracking page hotness by scan-
ning page tables to migrate hot application pages of different
sizes to fast memory [17, 23, 24]. In contrast, hardware ap-
proaches for data tiering augment the memory controller to
identify hot pages appropriate for fast memory [14, 18, 20].
None of the prior studies consider kernel object tiering. The
closest prior work, Mitosis, studies page tables placement
across NUMA memory sockets, but ignores file or networking
objects which dominate kernel memory footprint [8]. Finally,
current OSes lack support for kernel object migration which
further complicates management.

To understand the prevalence of kernel objects, our analysis
of I/O-intensive real-world application reveals that kernel ob-
jects can occupy 28-79% of total workload memory footprints
and account for 25-81% of the total memory references. These
kernel objects include page cache pages, journals, metadata
radix trees, block driver buffers, socket buffers, and journals.
While we wish to tier these objects to maximize performance,
kernel objects have lifetimes of tens of milliseconds, com-
pared to tens of minutes for application pages. This means
that existing LRU code paths, which can take many seconds
to identify hot/cold application pages, are simply too slow for



kernel object hotness measurement.

3. Design of KLOCs
To efficiently manage kernel objects in heterogeneous memory
systems, we introduce a new OS abstraction, kernel-level ob-
ject contexts (KLOCs) that offers mechanisms for (1) grouping
related kernel objects, (2) low overhead hotness identification
and migration support, and (3) support for existing OS-level
data tiering policies. These activities are handled entirely
within the OS and are transparent to user space.
Grouping related kernel objects At the core of the KLOC ab-
straction is the ability to group related kernel objects together.
Careful grouping enables acceleration of application-initiated
operations that require access to multiple related kernel ob-
jects. In Figure 1, we show that KLOCs use a knode data
structure to group and act as a "table of contents" to the lo-
cations of all associated kernel objects associated with each
inode. The knodes are allocated during inode creation (i.e., file
or network socket creation) and every file’s inode maintains a
pointer to its associated knode. Knodes maintain a page-cache
tree to track large kernel objects such as page cache and a slab
tree for smaller kernel objects allocated using slab allocators.
Maintaining independent trees allows quick identification of
related kernel objects and enables prioritization of slab-based
kernel objects with short lifetimes.
Placement and Migration of Kernel Objects We place and
migrate kernel objects using knodes and their associated in-
odes. We allocate kernel objects associated with an inode
to fast memory before adding references to them to the kn-
ode. Allocations can fail due to limited fast memory capacity.
Hence, we must provide mechanisms to continuously identify
hot and cold kernel objects and move them to fast and slow
memory, respectively.
Per-CPU fast paths and knode LRU: A kernel object is hot
when the knode with which it is associated is hot. A knode
is hot when the corresponding inode is actively used. To
track all knodes, they are mapped to a global kmap, which we
implement using a red-black tree. The migration mechanism
identifies hot and cold knodes and migrates all associated
kernel objects to fast memory when hot, or memory when
cold. One challenge is that there may be hundreds of knodes
that are accessed or shared across tens of CPUs. Consequently,
updates to the global kmap must be serialized, which could
impact CPU scaling. To overcome this, we co-opt existing
per-cpu structures already used by the Linux community for
scalable tracking of kernel objects, and add per-cpu knode lists
that provide fast access to recently-used knodes. We associate
each knode with an age variable to track its time since last
access. We augment the LRU scanner to increment the knode
age field and migrate all kernel objects from colder knodes to
slow memory.
Making KLOCs migratable: Current OSes support migration
of application and kernel objects (e.g., page cache and vmal-
loc allocations) that are mapped in the virtual address space,

but lack support for relocation of widely-used slab-allocated
objects. Consequently, we design a new allocation interface
for kernel objects that enables allocation of kernel objects
into virtual address spaces by leveraging existing code paths
for anonymous virtual memory area regions to support kernel
object migration. When a KLOC corresponding to a file is mi-
grated, the kernel objects pointed to by the appropriate knode
sub-tree in Figure 1 are all migrated together.
Support for I/O prefetching, LRU, AutoNUMA We en-
hance Linux’s existing support for I/O prefetching and AutoN-
UMA policies to take advantage of kernel object tiering. We
also augment I/O prefetcher to allocate and prefetch I/O data
to fast memory.

4. Evaluation
To evaluate KLOCs’ kernel object tiering effectiveness to-
wards improving application performance, we evaluate the
KLOC abstraction on widely used storage and network-
intensive benchmarks and applications such as Filebench [22],
RocksDB [2], Redis [6], Cassandra [1], and Spark [25]. Our
evaluation uses a two-tier fast and slow DRAM platform emu-
lated using thermal throttling and a two-socket Intel Optane
DC system representative of a hybrid OS-hardware approach
for data management. Our comparison of KLOCs perfor-
mance against the state-of-the-art OS-controlled application
tiering shows throughput gains up to 2.7⇥ on the two-tier
platform and 1.4⇥ on the Intel Optane platform. The benefits
stem from KLOCs support for grouping related kernel objects,
inexpensive hotness detection, and kernel object migration.

5. Why ASPLOS?
The computing industry is undergoing profound changes as it
embraces heterogeneity at all levels of the systems stack. Het-
erogeneity in compute and memory are forcing researchers to
reconsider conventional wisdom in systems software and hard-
ware design and the abstractions that separate the two. This
paper is the first to show that although kernel objects have
traditionally been viewed as second-class citizens in memory
management compared to application pages, the advent of
memory heterogeneity, growth in overall memory capacity,
and improvements in storage and networking speeds make
memory placement of kernel objects critical to performance.
As befitting a conference focused on the intersection of ar-
chitecture and systems software, ASPLOS is an apt venue to
showcase the power of reasoning about kernel objects in terms
of contexts as an organization principle to tier kernel data.

Citation for most influential paper award This paper
helped influence research on memory tiering of kernel ob-
jects, long ignored in memory management research, in the
face of increasing heterogeneity of memory systems.

References
[1] Apache Cassandra. http://cassandra.apache.org/.

2



[2] Facebook RocksDB. http://rocksdb.org/.
[3] Intel-Micron Memory 3D XPoint. http://intel.ly/1eICR0a.
[4] Linux Page Migration. https://www.kernel.org/doc/

Documentation/vm/page_migration.
[5] Nginx memory usage. https://www.nginx.com/blog/

nginx-websockets-performance/.
[6] Redis. http://redis.io/.
[7] VMWare vNUMA. https://www.vmware.com/files/pdf/

techpaper/VMware-vSphere-CPU-Sched-Perf.pdf.
[8] Reto Achermann, Ashish Panwar, Abhishek Bhattacharjee, Timothy

Roscoe, and Jayneel Gandhi. Mitosis: Transparently self-replicating
page-tables for large-memory machines. In Proceedings of the In-
ternational Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS’20, 2020.

[9] Neha Agarwal and Thomas F. Wenisch. Thermostat: Application-
transparent page management for two-tiered main memory. In Pro-
ceedings of the Twenty-Second International Conference on Architec-
tural Support for Programming Languages and Operating Systems,
ASPLOS ’17, pages 631–644, New York, NY, USA, 2017. ACM.

[10] Ameen Akel, Adrian M. Caulfield, Todor I. Mollov, Rajesh K. Gupta,
and Steven Swanson. Onyx: A Protoype Phase Change Memory
Storage Array. In Proceedings of the 3rd USENIX conference on Hot
topics in storage and file systems, HotStorage’11, Portland, OR, 2011.

[11] Berkin Akin, Franz Franchetti, and James C. Hoe. Data reorganization
in memory using 3d-stacked dram. In Proceedings of the 42Nd Annual
International Symposium on Computer Architecture, ISCA ’15, pages
131–143, New York, NY, USA, 2015. ACM.

[12] Oren Avissar, Rajeev Barua, and Dave Stewart. An optimal memory
allocation scheme for scratch-pad-based embedded systems. ACM
Trans. Embed. Comput. Syst., 1(1):6–26, November 2002.

[13] Bryan Black, Murali Annavaram, Ned Brekelbaum, John DeVale, Lei
Jiang, Gabriel H. Loh, Don McCaule, Pat Morrow, Donald W. Nelson,
Daniel Pantuso, Paul Reed, Jeff Rupley, Sadasivan Shankar, John Shen,
and Clair Webb. Die stacking (3d) microarchitecture. In Proceedings
of the 39th Annual IEEE/ACM International Symposium on Microar-
chitecture, MICRO 39, pages 469–479, Washington, DC, USA, 2006.
IEEE Computer Society.

[14] Chia-Chen Chou, Aamer Jaleel, and Moinuddin Qureshi. Batman:
Maximizing bandwidth utilization for hybrid memory systems. In
Technical Report, TR-CARET-2015-01 (March 9, 2015), 2015.

[15] Subramanya R. Dulloor, Amitabha Roy, Zheguang Zhao, Narayanan
Sundaram, Nadathur Satish, Rajesh Sankaran, Jeff Jackson, and
Karsten Schwan. Data tiering in heterogeneous memory systems.
In Proceedings of the Eleventh European Conference on Computer
Systems, EuroSys ’16, pages 15:1–15:16, New York, NY, USA, 2016.
ACM.

[16] Djordje Jevdjic, Stavros Volos, and Babak Falsafi. Die-stacked dram
caches for servers: Hit ratio, latency, or bandwidth? have it all with
footprint cache. In Proceedings of the 40th Annual International
Symposium on Computer Architecture, ISCA ’13, pages 404–415, New
York, NY, USA, 2013. ACM.

[17] Sudarsun Kannan, Ada Gavrilovska, Vishal Gupta, and Karsten
Schwan. Heteroos: Os design for heterogeneous memory manage-
ment in datacenter. In Proceedings of the 44th Annual International
Symposium on Computer Architecture, ISCA ’17, pages 521–534, New
York, NY, USA, 2017. ACM.

[18] M.R. Meswani, S. Blagodurov, D. Roberts, J. Slice, M. Ignatowski, and
G.H. Loh. Heterogeneous memory architectures: A hw/sw approach
for mixing die-stacked and off-package memories. In High Perfor-
mance Computer Architecture (HPCA), 2015 IEEE 21st International
Symposium on, pages 126–136, Feb 2015.

[19] Milan Radulovic, Darko Zivanovic, Daniel Ruiz, Bronis R. de Supinski,
Sally A. McKee, Petar Radojković, and Eduard Ayguadé. Another trip
to the wall: How much will stacked dram benefit hpc? In Proceedings
of the 2015 International Symposium on Memory Systems, MEMSYS
’15, pages 31–36, New York, NY, USA, 2015. ACM.

[20] Luiz E. Ramos, Eugene Gorbatov, and Ricardo Bianchini. Page place-
ment in hybrid memory systems. In Proceedings of the International
Conference on Supercomputing, ICS ’11, pages 85–95, New York, NY,
USA, 2011. ACM.

[21] Jia Rao, Kun Wang, Xiaobo Zhou, and Cheng zhong Xu. Optimiz-
ing virtual machine scheduling in numa multicore systems. In High
Performance Computer Architecture (HPCA2013), 2013 IEEE 19th
International Symposium on, pages 306–317, Feb 2013.

[22] Tarasov Vasily. Filebench. https://github.com/filebench/
filebench.

[23] Zi Yan, Daniel Lustig, David Nellans, and Abhishek Bhattacharjee.
Nimble page management for tiered memory systems. In Proceedings
of the Twenty-Fourth International Conference on Architectural Sup-
port for Programming Languages and Operating Systems, ASPLOS
’19, pages 331–345, New York, NY, USA, 2019. ACM.

[24] Zi Yan, Jan Vesely, Guilherme Cox, and Abhishek Bhattacharjee. Hard-
ware translation coherence for virtualized systems. In International
Symposium on Computer Architecture, ISCA ’17, 2017.

[25] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott
Shenker, and Ion Stoica. Spark: Cluster computing with working
sets. In Proceedings of the 2Nd USENIX Conference on Hot Topics
in Cloud Computing, HotCloud’10, pages 10–10, Berkeley, CA, USA,
2010. USENIX Association.

3


