
Sage: Practical & Scalable ML-Driven Performance Debugging in Microservices
Extended Abstract

Yu Gan1, Mingyu Liang1, Sundar Dev2, David Lo2, and Christina Delimitrou1

1Cornell University, 2Google

1. Motivation

Cloud applications are progressively shifting from monolithic
services to graphs with hundreds of single-purpose and loosely-
coupled microservices [2, 7, 8, 22, 48, 49]. Several large cloud
providers, such as Amazon, Twitter, Netflix, and eBay have
already adopted this application model [2, 7, 8].

Microservices offer several advantages, such as rapid in-
tegration and deployment, but they also introduce new chal-
lenges with respect to resource management, as dependen-
cies between tiers introduce backpressure effects, causing
unpredictable performance to propagate through the sys-
tem [22, 23]. Diagnosing such performance issues empir-
ically is both cumbersome and prone to errors, especially
as typical microservices deployments include hundreds or
thousands of unique tiers. Similarly, current cluster man-
agers [17, 18, 19, 27, 29, 30, 31, 32, 35, 36, 38, 42, 45, 53, 56]
are not expressive enough to account for the impact of mi-
croservice dependencies, thus putting more pressure on the
need for automated performance debugging systems.

2. Limitations of the State of the Art

With the increased pervasiveness of the cloud, monitoring and
performance debugging systems that track and investigate sys-
tem and application behavior over time have gained attention.
Several tools, such as [9, 14, 20], construct causal paths and
diagnose performance issues in distributed systems. There
are also several production-level distributed tracing systems,
including Dapper [46], Zipkin [6], Jaeger [4], and Google-
Wide Profiling (GWP) [39]. Dapper, Zipkin and Jaeger record
RPC-level traces for sampled requests across the calling stack,
while GWP monitors low-level hardware metrics. These sys-
tems aim to facilitate locating performance issues, but are not
geared towards taking action to resolve them.

On the performance debugging front, there has been in-
creased attention on trace-based methods to analyze [12, 20,
37], diagnose [9, 10, 13, 16, 24, 25, 26, 34, 40, 51, 54, 55], and
in some cases anticipate [21, 23, 50] performance issues in
cloud services. Autopilot [41], for example, adjusts the num-
ber of tasks and CPU/memory limits automatically to reduce
resource slack while guaranteeing performance.

While most of these systems target cloud applications, they
almost always focus on single-tier services, and even the ones
targeting microservices [23] rely on supervised learning and
invasive instrumentation to correctly diagnose the root causes
of unpredictable performance. This is problematic in real
cloud deployments, as labeling training data with the root
causes of QoS violations requires manually diagnosing past

performance issues, or injecting new ones whose cause is
known. This is impractical, as introducing performance issues
hurts the availability and user experience of live applications.
Similarly, instrumenting the application and kernel is non-
trivial, especially in cases of third-party microservices, whose
source code may not be available. Therefore, it is important to
explore performance debugging techniques that can uncover
the impact of dependencies between microservices without
the need for data labeling or expensive instrumentation.

3. Key Insights
We present Sage, a root cause analysis system that leverages
unsupervised learning to identify the culprit of unpredictable
performance in complex graphs of microservices. Specifically,
Sage uses Causal Bayesian Networks to capture the dependen-
cies between microservices, and counterfactuals to examine
the impact of microservices on end-to-end performance. Sage
does not rely on data labeling, hence it can be entirely trans-
parent to both cloud users and application developers, scales
well with the number of microservices and machines, and only
relies on lightweight tracing that does not require application
changes or kernel instrumentation.

The main design principles in Sage are the following:
• Unsupervised learning: Sage focuses on unsupervised

learning to circumvent the overhead of labeling training data,
which is not practical and/or scalable in real deployments.
Instead, it shows that low-frequency live traces collected
using infrastructure readily available in cloud providers to-
day, coupled with a set of analytical and ML methods are
sufficient to correctly identify the culprits of QoS violations
in a complex system.

• Robustness to sampling frequency: Sage does not require
tracking individual requests to detect temporal latency pat-
terns, making it robust to tracing frequency. This is impor-
tant, as production tracing systems like Dapper [46] employ
aggressive request sampling to reduce overheads [15, 43].
In comparison, previous studies [23, 44, 52] collect traces
at the granularity of 10s-100s of milliseconds, which can
introduce significant monitoring overheads.

• User-level metrics: Sage only uses user-level metrics that
can be easily obtained through cloud monitoring APIs and
service-level traces from distributed tracing frameworks,
such as Jaeger [4] or Zipkin [6]. It does not require any
kernel-level information, which is expensive, or even inac-
cessible in many cloud platforms.

• Partial retraining: A major design premise of microser-
vices is enabling frequent updates. Retraining the entire de-
bugging system every time the code or deployment of a mi-

1



croservice changes is prohibitively expensive. Instead Sage
implements partial and incremental retraining, whereby only
the microservice that changed and its immediate neighbors
are retrained, greatly reducing overheads.

• Fast resolution: Empirically examining different sources
of unpredictable performance is costly in both time and
resources, especially due to the ingest delay cloud systems
have in consuming monitoring data, causing a change to
experience inertia before propagating on recorded traces.
Sage models the impact of the different probable root causes
concurrently, enabling faster QoS recovery.

4. Main Artifacts
Sage is an ML-driven performance debugging system for inter-
active cloud microservices. An overview of the ML pipeline
and system architecture of Sage can be found in Figures 1 and
7 of the original paper. The main artifacts we present are:
ML pipeline: Sage contributes an unsupervised ML pipeline
consisting of a causal Bayesian network (CBN) and a graph-
ical variational auto-encoder (GVAE). The CBN is trained
on RPC-level distributed traces [6, 46] to capture the depen-
dencies between microservices, as well as causal relationships
between individual microservices and the end-to-end perfor-
mance. The CBN also captures the latency propagation from
the backend to the frontend. Second, Sage uses a graphical
variational auto-encoder (GVAE), a deep generative model, to
generate hypothetical scenarios (counterfactuals [33]), which
tweak the performance and/or usage of individual microser-
vices to values known to meet QoS, and infers whether the
change restores QoS. Using these two techniques, Sage deter-
mines which set of microservices initiated a QoS violation, and
adjusts their deployment or resource allocation accordingly.
System design and implementation: We have designed
and implemented the end-to-end debugging system, includ-
ing the tracing infrastructure, ML pipeline, and performance
debugging system. The system uses Jaeger [4], a distributed
RPC tracing system for end-to-end execution traces, and the
Prometheus Node Exporter [5] to collect hardware/OS met-
rics, container-level performance metrics, and network laten-
cies. Sage uses a centralized master for trace processing, root
cause analysis, and actuation, implemented in approximately
6KLOC of Python, and per-node agents for trace collection
and container deployment. It also maintains two hot stand-by
copies of the master for fault tolerance. The GVAE model is
built in PyTorch, with each VAE’s encoder, decoder, and prior
networks using a DNN with 3-5 fully connected layers.
Validation methodology & large-scale evaluation: We val-
idate Sage’s root cause detection accuracy using both syn-
thetic microservice topologies based on Apache Thrift [1, 47],
a widely-used RPC framework, and an end-to-end application
from the DeathStarBench suite implementing a Social Net-
work [22]. We use wrk2 [3], an open-loop HTTP workload
generator, to send requests to the front-ends of all applications.
We first validate Sage’s accuracy in a controlled local cluster,
and then we demonstrate Sage’s scalability on a large-scale

deployment on Google Compute Engine.

5. Key Results
We compare Sage with autoscaling techniques, which are
widely used in industry, as well as recent work on performance
debugging (CauseInfer [11], Microscope [28], and Seer [23]),
targeting both monolithic and microservice applications.

In the dedicated local cluster, we show that Sage achieves
91%-95% root cause detection accuracy, and can quickly take
action and restore QoS. It significantly outperforms the au-
toscaling techniques, by learning the impact of microservice
dependencies, instead of memorizing usage thresholds for a
particular cluster state. We also show that Sage outperforms
prior work on performance debugging, namely CauseInfer and
Microscope, which often identify the wrong paths in the depen-
dency graph when searching for root causes. Finally, we show
that the unsupervised models in Sage achieve very similar
accuracy to the supervised model of Seer, but are significantly
more practical and scalable. Specifically, unlike Seer, Sage
does not require millisecond-level tracing of queue lengths
across the system stack, and it does not need labeling data for
training. This makes Sage more portable in datacenter deploy-
ments, especially when the application includes libraries or
tiers that cannot be instrumented.

We also evaluate Sage’s ability to adjust to changes in appli-
cation design, which are common in microservices. To adapt
to such changes, Sage uses transfer learning and partial retrain-
ing to localize the model updates to only neurons affected by a
change. We show that transfer learning allows Sage to keep its
detection accuracy high, and makes retraining 3−30× faster
than when retraining the model from scratch.

Finally we evaluate Sage’s scalability on 188 container in-
stances on Google Compute Engine. Although we deploy
6.7× more containers compared to the local cluster, the train-
ing and inference times only increase by 19.4% and 26.5%
respectively. The detection accuracy is not impacted by system
scale. Finally, we show that in addition to resource-related
performance issues, Sage is also able to detect performance
problems caused by software bugs, and isolate the microser-
vice where the bug resides.

6. Why ASPLOS
Sage tackles performance predictability in microservices, a
challenging problem that many cloud providers face, espe-
cially on an increasingly prevalent application model. Per-
formance debugging and cloud systems are popular topics
in ASPLOS and involve hardware, operating systems, and
application-level innovations. Sage leverages ML for perfor-
mance debugging, which also fits in the ML for systems topic.

7. Citation for Most Influential Paper Award
For introducing a data-driven approach in cloud performance
debugging, and showing the potential and benefits of using
unsupervised learning to address the performance challenges
of interactive microservices in a scalable and practical manner.

2



References
[1] Apache thrift. https://thrift.apache.org.
[2] Decomposing twitter: Adventures in service-oriented archi-

tecture. https://www.slideshare.net/InfoQ/decomposing-
twitter-adventures-in-serviceoriented-architecture.

[3] giltene/wrk2. https://github.com/giltene/wrk2.
[4] Jaeger: open source, end-to-end distributed tracing. https://

www.jaegertracing.io/.
[5] prometheus/node_exporter. https://github.com/prometheus/

node_exporter.
[6] Zipkin. http://zipkin.io.
[7] The evolution of microservices. https://www.slideshare.net/

adriancockcroft/evolution-of-microservices-craft-
conference, 2016.

[8] Microservices workshop: Why, what, and how to get
there. http://www.slideshare.net/adriancockcroft/
microservices-workshop-craft-conference.

[9] Marcos K. Aguilera, Jeffrey C. Mogul, Janet L. Wiener, Patrick
Reynolds, and Athicha Muthitacharoen. Performance debugging for
distributed systems of black boxes. In Proceedings of the Nineteenth
ACM Symposium on Operating Systems Principles, SOSP ’03, page
74–89, New York, NY, USA, 2003. Association for Computing Ma-
chinery.

[10] Mona Attariyan, MIchael Chow, and Jason Flinn. X-ray: Automating
root-cause diagnosis of performance anomalies in production software.
In Presented as part of the 10th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 12), pages 307–320, Hol-
lywood, CA, 2012. USENIX.

[11] P. Chen, Y. Qi, P. Zheng, and D. Hou. Causeinfer: Automatic and
distributed performance diagnosis with hierarchical causality graph in
large distributed systems. In IEEE INFOCOM 2014 - IEEE Conference
on Computer Communications, pages 1887–1895, 2014.

[12] Xu Chen, Ming Zhang, Morley Mao, and Paramvir Bahl. Automating
network application dependency discovery: Experiences, limitations,
and new solutions. In Proc. of OSDI. 2008.

[13] L. Cherkasova, K. Ozonat, Ningfang Mi, J. Symons, and E. Smirni.
Anomaly? application change? or workload change? towards au-
tomated detection of application performance anomaly and change.
In 2008 IEEE International Conference on Dependable Systems and
Networks With FTCS and DCC (DSN), pages 452–461, 2008.

[14] Michael Chow, David Meisner, Jason Flinn, Daniel Peek, and
Thomas F. Wenisch. The mystery machine: End-to-end performance
analysis of large-scale internet services. In Proceedings of the 11th
USENIX Conference on Operating Systems Design and Implementa-
tion, OSDI’14, pages 217–231, Berkeley, CA, USA, 2014. USENIX
Association.

[15] Google Cloud. Cloud Monitoring documentation, 2020.
[16] Ira Cohen, Moises Goldszmidt, Terence Kelly, Julie Symons, and

Jeffrey S. Chase. Correlating instrumentation data to system states:a
building block for automated diagnosis and control. In HP Laboratories
Palo Alto, HPL-2004-183, October 19, 2004.

[17] Christina Delimitrou and Christos Kozyrakis. Paragon: QoS-Aware
Scheduling for Heterogeneous Datacenters. In Proceedings of the
Eighteenth International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS). Houston, TX,
USA, 2013.

[18] Christina Delimitrou and Christos Kozyrakis. Quasar: Resource-
Efficient and QoS-Aware Cluster Management. In Proc. of ASPLOS.
Salt Lake City, 2014.

[19] Christina Delimitrou, Daniel Sanchez, and Christos Kozyrakis. Tarcil:
Reconciling Scheduling Speed and Quality in Large Shared Clusters.
In Proceedings of the Sixth ACM Symposium on Cloud Computing
(SOCC), August 2015.

[20] Rodrigo Fonseca, George Porter, Randy H. Katz, Scott Shenker, and
Ion Stoica. X-trace: A pervasive network tracing framework. In
Proceedings of the 4th USENIX Conference on Networked Systems
Design & Implementation, NSDI’07, pages 20–20, Berkeley, CA, USA,
2007. USENIX Association.

[21] Yu Gan, Meghna Pancholi, Dailun Cheng, Siyuan Hu, Yuan He, and
Christina Delimitrou. Seer: Leveraging Big Data to Navigate the
Complexity of Cloud Debugging. In Proceedings of the Tenth USENIX
Workshop on Hot Topics in Cloud Computing (HotCloud), July 2018.

[22] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi,
Nayantara Katarki, Ariana Bruno, Justin Hu, Brian Ritchken, Brendon
Jackson, Kelvin Hu, Meghna Pancholi, Yuan He, Brett Clancy, Chris
Colen, Fukang Wen, Catherine Leung, Siyuan Wang, Leon Zaruvinsky,
Mateo Espinosa, Rick Lin, Zhongling Liu, Jake Padilla, and Christina

Delimitrou. An Open-Source Benchmark Suite for Microservices and
Their Hardware-Software Implications for Cloud and Edge Systems.
In Proceedings of the Twenty Fourth International Conference on
Architectural Support for Programming Languages and Operating
Systems (ASPLOS), April 2019.

[23] Yu Gan, Yanqi Zhang, Kelvin Hu, Yuan He, Meghna Pancholi, Dailun
Cheng, and Christina Delimitrou. Seer: Leveraging Big Data to Nav-
igate the Complexity of Performance Debugging in Cloud Microser-
vices. In Proceedings of the Twenty Fourth International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), April 2019.

[24] M. Grechanik, C. Fu, and Q. Xie. Automatically finding performance
problems with feedback-directed learning software testing. In 2012
34th International Conference on Software Engineering (ICSE), pages
156–166, 2012.

[25] Olumuyiwa Ibidunmoye, Francisco Hernández-Rodriguez, and Erik
Elmroth. Performance anomaly detection and bottleneck identification.
ACM Comput. Surv., 48(1), July 2015.

[26] Guoliang Jin, Linhai Song, Xiaoming Shi, Joel Scherpelz, and Shan
Lu. Understanding and detecting real-world performance bugs. In
Proceedings of the 33rd ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’12, page 77–88, New
York, NY, USA, 2012. Association for Computing Machinery.

[27] Ching-Chi Lin, Pangfeng Liu, and Jan-Jan Wu. Energy-aware virtual
machine dynamic provision and scheduling for cloud computing. In
Proceedings of the 2011 IEEE 4th International Conference on Cloud
Computing (CLOUD). Washington, DC, USA, 2011.

[28] JinJin Lin, Pengfei Chen, and Zibin Zheng. Microscope: Pinpoint
performance issues with causal graphs in micro-service environments.
In International Conference on Service-Oriented Computing, pages
3–20. Springer, 2018.

[29] David Lo, Liqun Cheng, Rama Govindaraju, Luiz André Barroso, and
Christos Kozyrakis. Towards energy proportionality for large-scale
latency-critical workloads. In Proceedings of the 41st Annual Inter-
national Symposium on Computer Architecuture (ISCA). Minneapolis,
MN, 2014.

[30] David Lo, Liqun Cheng, Rama Govindaraju, Parthasarathy Ran-
ganathan, and Christos Kozyrakis. Heracles: Improving resource
efficiency at scale. In Proc. of the 42Nd Annual International Sympo-
sium on Computer Architecture (ISCA). Portland, OR, 2015.

[31] Jason Mars and Lingjia Tang. Whare-map: heterogeneity in "homoge-
neous" warehouse-scale computers. In Proceedings of ISCA. Tel-Aviv,
Israel, 2013.

[32] David Meisner, Christopher M. Sadler, Luiz André Barroso, Wolf-
Dietrich Weber, and Thomas F. Wenisch. Power management of online
data-intensive services. In Proceedings of the 38th annual international
symposium on Computer architecture, pages 319–330, 2011.

[33] Michael Moore. Causation in the law. In Edward N. Zalta, editor,
The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab,
Stanford University, winter 2019 edition, 2019.

[34] Karthik Nagaraj, Charles Killian, and Jennifer Neville. Structured com-
parative analysis of systems logs to diagnose performance problems.
In Presented as part of the 9th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 12), pages 353–366, San
Jose, CA, 2012. USENIX.

[35] Ripal Nathuji, Canturk Isci, and Eugene Gorbatov. Exploiting platform
heterogeneity for power efficient data centers. In Proceedings of ICAC.
Jacksonville, FL, 2007.

[36] Ripal Nathuji, Aman Kansal, and Alireza Ghaffarkhah. Q-clouds:
Managing performance interference effects for qos-aware clouds. In
Proceedings of EuroSys. Paris,France, 2010.

[37] Kay Ousterhout, Ryan Rasti, Sylvia Ratnasamy, Scott Shenker, and
Byung-Gon Chun. Making sense of performance in data analytics
frameworks. In 12th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 15), pages 293–307, Oakland, CA,
May 2015. USENIX Association.

[38] Kay Ousterhout, Patrick Wendell, Matei Zaharia, and Ion Stoica. Spar-
row: Distributed, low latency scheduling. In Proceedings of SOSP.
Farminton, PA, 2013.

[39] Gang Ren, Eric Tune, Tipp Moseley, Yixin Shi, Silvius Rus, and Robert
Hundt. Google-wide profiling: A continuous profiling infrastructure
for data centers. IEEE Micro, pages 65–79, 2010.

[40] Patrick Reynolds, Janet L. Wiener, Jeffrey C. Mogul, Marcos K. Aguil-
era, and Amin Vahdat. Wap5: Black-box performance debugging for
wide-area systems. In Proceedings of the 15th International Confer-
ence on World Wide Web, WWW ’06, page 347–356, New York, NY,
USA, 2006. Association for Computing Machinery.

3

https://thrift.apache.org
https://www.slideshare.net/InfoQ/decomposing-twitter-adventures-in-serviceoriented-architecture
https://www.slideshare.net/InfoQ/decomposing-twitter-adventures-in-serviceoriented-architecture
https://github.com/giltene/wrk2
https://www.jaegertracing.io/
https://www.jaegertracing.io/
https://github.com/prometheus/node_exporter
https://github.com/prometheus/node_exporter
http://zipkin.io
https://www.slideshare.net/adriancockcroft/evolution-of-microservices-craft-conference
https://www.slideshare.net/adriancockcroft/evolution-of-microservices-craft-conference
https://www.slideshare.net/adriancockcroft/evolution-of-microservices-craft-conference
http://www.slideshare.net/adriancockcroft/microservices-workshop-craft-conference
http://www.slideshare.net/adriancockcroft/microservices-workshop-craft-conference


[41] Krzysztof Rzadca, Pawel Findeisen, Jacek Swiderski, Przemyslaw
Zych, Przemyslaw Broniek, Jarek Kusmierek, Pawel Nowak, Beata
Strack, Piotr Witusowski, Steven Hand, and John Wilkes. Autopilot:
Workload autoscaling at google. In Proceedings of the Fifteenth Euro-
pean Conference on Computer Systems, EuroSys ’20, New York, NY,
USA, 2020. Association for Computing Machinery.

[42] Malte Schwarzkopf, Andy Konwinski, Michael Abd-El-Malek, and
John Wilkes. Omega: flexible, scalable schedulers for large compute
clusters. In Proceedings of EuroSys. Prague, 2013.

[43] Amazon Web Services. Amazon CloudWatch User Guide Document
History, 2020.

[44] Huasong Shan, Yuan Chen, Haifeng Liu, Yunpeng Zhang, Xiao Xiao,
Xiaofeng He, Min Li, and Wei Ding. ??-diagnosis: Unsupervised and
real-time diagnosis of small- window long-tail latency in large-scale
microservice platforms. In The World Wide Web Conference, WWW
’19, page 3215–3222, New York, NY, USA, 2019. Association for
Computing Machinery.

[45] Zhiming Shen, Sethuraman Subbiah, Xiaohui Gu, and John Wilkes.
Cloudscale: elastic resource scaling for multi-tenant cloud systems. In
Proceedings of SOCC. Cascais, Portugal, 2011.

[46] Benjamin H. Sigelman, Luiz André Barroso, Mike Burrows, Pat
Stephenson, Manoj Plakal, Donald Beaver, Saul Jaspan, and Chandan
Shanbhag. Dapper, a large-scale distributed systems tracing infrastruc-
ture. Technical report, Google, Inc., 2010.

[47] Mark Slee, Aditya Agarwal, and Marc Kwiatkowski. Thrift: Scalable
cross-language services implementation. Facebook White Paper, 5(8),
2007.

[48] A. Sriraman and T. F. Wenisch. µ suite: A benchmark suite for
microservices. In 2018 IEEE International Symposium on Workload
Characterization (IISWC), pages 1–12, 2018.

[49] Ananda Theertha Suresh, X Yu Felix, Sanjiv Kumar, and H Brendan
McMahan. Distributed mean estimation with limited communication.
In International Conference on Machine Learning, pages 3329–3337,
2017.

[50] Yongmin Tan, Hiep Nguyen, Zhiming Shen, Xiaohui Gu, Chitra Venka-
tramani, and Deepak Rajan. Prepare: Predictive performance anomaly
prevention for virtualized cloud systems. In Proc. of the 32nd IEEE
International Conference on Distributed Computing Systems. 2012.

[51] Jason Teoh, Muhammad Ali Gulzar, Guoqing Harry Xu, and Miryung
Kim. Perfdebug: Performance debugging of computation skew in
dataflow systems. In Proceedings of the ACM Symposium on Cloud
Computing, SoCC ’19, page 465–476, New York, NY, USA, 2019.
Association for Computing Machinery.

[52] Jörg Thalheim, Antonio Rodrigues, Istemi Ekin Akkus, Pramod Bhato-
tia, Ruichuan Chen, Bimal Viswanath, Lei Jiao, and Christof Fetzer.
Sieve: Actionable insights from monitored metrics in distributed sys-
tems. In Proceedings of the 18th ACM/IFIP/USENIX Middleware
Conference, Middleware ’17, page 14–27, New York, NY, USA, 2017.
Association for Computing Machinery.

[53] Abhishek Verma, Luis Pedrosa, Madhukar R. Korupolu, David Oppen-
heimer, Eric Tune, and John Wilkes. Large-scale cluster management
at Google with Borg. In Proceedings of the European Conference on
Computer Systems (EuroSys), Bordeaux, France, 2015.

[54] C. Wang, K. Viswanathan, L. Choudur, V. Talwar, W. Satterfield, and
K. Schwan. Statistical techniques for online anomaly detection in data
centers. In 12th IFIP/IEEE International Symposium on Integrated
Network Management (IM 2011) and Workshops, pages 385–392, 2011.

[55] Helen J. Wang, John C. Platt, Yu Chen, Ruyun Zhang, and Yi-Min
Wang. Automatic misconfiguration troubleshooting with peerpressure.
In Proceedings of the 6th Conference on Symposium on Operating
Systems Design & Implementation - Volume 6, OSDI’04, page 17,
USA, 2004. USENIX Association.

[56] Hailong Yang, Alex Breslow, Jason Mars, and Lingjia Tang. Bubble-
flux: precise online qos management for increased utilization in ware-
house scale computers. In Proceedings of ISCA. 2013.

4


	Motivation
	Limitations of the State of the Art
	Key Insights
	Main Artifacts
	Key Results
	Why ASPLOS
	Citation for Most Influential Paper Award

