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1. Motivation

Cloud applications are progressively shifting from monolithic
services to graphs with hundreds of single-purpose and loosely-
coupled microservices [2, 7, 8, 22, 48, 49]. Several large cloud
providers, such as Amazon, Twitter, Netflix, and eBay have
already adopted this application model [2, 7, 8].

Microservices offer several advantages, such as rapid in-
tegration and deployment, but they also introduce new chal-
lenges with respect to resource management, as dependen-
cies between tiers introduce backpressure effects, causing
unpredictable performance to propagate through the sys-
tem [22, 23]. Diagnosing such performance issues empir-
ically is both cumbersome and prone to errors, especially
as typical microservices deployments include hundreds or
thousands of unique tiers. Similarly, current cluster man-
agers [17, 18, 19, 27, 29, 30, 31, 32, 35, 36, 38, 42, 45, 53, 56]
are not expressive enough to account for the impact of mi-
croservice dependencies, thus putting more pressure on the
need for automated performance debugging systems.

2. Limitations of the State of the Art

With the increased pervasiveness of the cloud, monitoring and
performance debugging systems that track and investigate sys-
tem and application behavior over time have gained attention.
Several tools, such as [9, 14, 20], construct causal paths and
diagnose performance issues in distributed systems. There
are also several production-level distributed tracing systems,
including Dapper [46], Zipkin [6], Jaeger [4], and Google-
Wide Profiling (GWP) [39]. Dapper, Zipkin and Jaeger record
RPC-level traces for sampled requests across the calling stack,
while GWP monitors low-level hardware metrics. These sys-
tems aim to facilitate locating performance issues, but are not
geared towards taking action to resolve them.

On the performance debugging front, there has been in-
creased attention on trace-based methods to analyze [12, 20,
37], diagnose [9, 10, 13, 16, 24, 25, 26, 34, 40, 51, 54, 55], and
in some cases anticipate [21, 23, 50] performance issues in
cloud services. Autopilot [41], for example, adjusts the num-
ber of tasks and CPU/memory limits automatically to reduce
resource slack while guaranteeing performance.

While most of these systems target cloud applications, they
almost always focus on single-tier services, and even the ones
targeting microservices [23] rely on supervised learning and
invasive instrumentation to correctly diagnose the root causes
of unpredictable performance. This is problematic in real
cloud deployments, as labeling training data with the root
causes of QoS violations requires manually diagnosing past

performance issues, or injecting new ones whose cause is
known. This is impractical, as introducing performance issues
hurts the availability and user experience of live applications.
Similarly, instrumenting the application and kernel is non-
trivial, especially in cases of third-party microservices, whose
source code may not be available. Therefore, it is important to
explore performance debugging techniques that can uncover
the impact of dependencies between microservices without
the need for data labeling or expensive instrumentation.

3. Key Insights
We present Sage, a root cause analysis system that leverages
unsupervised learning to identify the culprit of unpredictable
performance in complex graphs of microservices. Specifically,
Sage uses Causal Bayesian Networks to capture the dependen-
cies between microservices, and counterfactuals to examine
the impact of microservices on end-to-end performance. Sage
does not rely on data labeling, hence it can be entirely trans-
parent to both cloud users and application developers, scales
well with the number of microservices and machines, and only
relies on lightweight tracing that does not require application
changes or kernel instrumentation.

The main design principles in Sage are the following:
• Unsupervised learning: Sage focuses on unsupervised

learning to circumvent the overhead of labeling training data,
which is not practical and/or scalable in real deployments.
Instead, it shows that low-frequency live traces collected
using infrastructure readily available in cloud providers to-
day, coupled with a set of analytical and ML methods are
sufficient to correctly identify the culprits of QoS violations
in a complex system.

• Robustness to sampling frequency: Sage does not require
tracking individual requests to detect temporal latency pat-
terns, making it robust to tracing frequency. This is impor-
tant, as production tracing systems like Dapper [46] employ
aggressive request sampling to reduce overheads [15, 43].
In comparison, previous studies [23, 44, 52] collect traces
at the granularity of 10s-100s of milliseconds, which can
introduce significant monitoring overheads.

• User-level metrics: Sage only uses user-level metrics that
can be easily obtained through cloud monitoring APIs and
service-level traces from distributed tracing frameworks,
such as Jaeger [4] or Zipkin [6]. It does not require any
kernel-level information, which is expensive, or even inac-
cessible in many cloud platforms.

• Partial retraining: A major design premise of microser-
vices is enabling frequent updates. Retraining the entire de-
bugging system every time the code or deployment of a mi-

1



croservice changes is prohibitively expensive. Instead Sage
implements partial and incremental retraining, whereby only
the microservice that changed and its immediate neighbors
are retrained, greatly reducing overheads.

• Fast resolution: Empirically examining different sources
of unpredictable performance is costly in both time and
resources, especially due to the ingest delay cloud systems
have in consuming monitoring data, causing a change to
experience inertia before propagating on recorded traces.
Sage models the impact of the different probable root causes
concurrently, enabling faster QoS recovery.

4. Main Artifacts
Sage is an ML-driven performance debugging system for inter-
active cloud microservices. An overview of the ML pipeline
and system architecture of Sage can be found in Figures 1 and
7 of the original paper. The main artifacts we present are:
ML pipeline: Sage contributes an unsupervised ML pipeline
consisting of a causal Bayesian network (CBN) and a graph-
ical variational auto-encoder (GVAE). The CBN is trained
on RPC-level distributed traces [6, 46] to capture the depen-
dencies between microservices, as well as causal relationships
between individual microservices and the end-to-end perfor-
mance. The CBN also captures the latency propagation from
the backend to the frontend. Second, Sage uses a graphical
variational auto-encoder (GVAE), a deep generative model, to
generate hypothetical scenarios (counterfactuals [33]), which
tweak the performance and/or usage of individual microser-
vices to values known to meet QoS, and infers whether the
change restores QoS. Using these two techniques, Sage deter-
mines which set of microservices initiated a QoS violation, and
adjusts their deployment or resource allocation accordingly.
System design and implementation: We have designed
and implemented the end-to-end debugging system, includ-
ing the tracing infrastructure, ML pipeline, and performance
debugging system. The system uses Jaeger [4], a distributed
RPC tracing system for end-to-end execution traces, and the
Prometheus Node Exporter [5] to collect hardware/OS met-
rics, container-level performance metrics, and network laten-
cies. Sage uses a centralized master for trace processing, root
cause analysis, and actuation, implemented in approximately
6KLOC of Python, and per-node agents for trace collection
and container deployment. It also maintains two hot stand-by
copies of the master for fault tolerance. The GVAE model is
built in PyTorch, with each VAE’s encoder, decoder, and prior
networks using a DNN with 3-5 fully connected layers.
Validation methodology & large-scale evaluation: We val-
idate Sage’s root cause detection accuracy using both syn-
thetic microservice topologies based on Apache Thrift [1, 47],
a widely-used RPC framework, and an end-to-end application
from the DeathStarBench suite implementing a Social Net-
work [22]. We use wrk2 [3], an open-loop HTTP workload
generator, to send requests to the front-ends of all applications.
We first validate Sage’s accuracy in a controlled local cluster,
and then we demonstrate Sage’s scalability on a large-scale

deployment on Google Compute Engine.

5. Key Results
We compare Sage with autoscaling techniques, which are
widely used in industry, as well as recent work on performance
debugging (CauseInfer [11], Microscope [28], and Seer [23]),
targeting both monolithic and microservice applications.

In the dedicated local cluster, we show that Sage achieves
91%-95% root cause detection accuracy, and can quickly take
action and restore QoS. It significantly outperforms the au-
toscaling techniques, by learning the impact of microservice
dependencies, instead of memorizing usage thresholds for a
particular cluster state. We also show that Sage outperforms
prior work on performance debugging, namely CauseInfer and
Microscope, which often identify the wrong paths in the depen-
dency graph when searching for root causes. Finally, we show
that the unsupervised models in Sage achieve very similar
accuracy to the supervised model of Seer, but are significantly
more practical and scalable. Specifically, unlike Seer, Sage
does not require millisecond-level tracing of queue lengths
across the system stack, and it does not need labeling data for
training. This makes Sage more portable in datacenter deploy-
ments, especially when the application includes libraries or
tiers that cannot be instrumented.

We also evaluate Sage’s ability to adjust to changes in appli-
cation design, which are common in microservices. To adapt
to such changes, Sage uses transfer learning and partial retrain-
ing to localize the model updates to only neurons affected by a
change. We show that transfer learning allows Sage to keep its
detection accuracy high, and makes retraining 3−30× faster
than when retraining the model from scratch.

Finally we evaluate Sage’s scalability on 188 container in-
stances on Google Compute Engine. Although we deploy
6.7× more containers compared to the local cluster, the train-
ing and inference times only increase by 19.4% and 26.5%
respectively. The detection accuracy is not impacted by system
scale. Finally, we show that in addition to resource-related
performance issues, Sage is also able to detect performance
problems caused by software bugs, and isolate the microser-
vice where the bug resides.

6. Why ASPLOS
Sage tackles performance predictability in microservices, a
challenging problem that many cloud providers face, espe-
cially on an increasingly prevalent application model. Per-
formance debugging and cloud systems are popular topics
in ASPLOS and involve hardware, operating systems, and
application-level innovations. Sage leverages ML for perfor-
mance debugging, which also fits in the ML for systems topic.

7. Citation for Most Influential Paper Award
For introducing a data-driven approach in cloud performance
debugging, and showing the potential and benefits of using
unsupervised learning to address the performance challenges
of interactive microservices in a scalable and practical manner.
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