Nightcore: Efficient and Scalable Serverless Computing for Latency-Sensitive,
Interactive Microservices
Extended Abstract

Zhipeng Jia and Emmett Witchel

The University of Texas at Austin

1. Motivation

The microservice architecture is a popular software engineer-
ing approach for building large-scale online services. In
microservice-based applications, loosely coupled microser-
vices communicate with each other via pre-defined APIs,
mostly using remote procedure calls (RPC) [14]. The domi-
nant design pattern for microservices is that each microservice
is an RPC server and they are deployed on top of a container
orchestration platform such as Kubernetes [14, 7, 4]. Server-
less functions, or function as a service (FaaS), provide a simple
programming model of stateless functions which are a natu-
ral substrate for implementing the stateless RPC handlers of
microservices, as an alternative to containerized RPC servers.

However, current FaaS systems have invocation latency
overheads in the 1-10s of milliseconds range [1, 8, 19] (see
Table 1), making them a poor choice for latency-sensitive in-
teractive microservices, where RPC handlers only run for hun-
dreds of microseconds to a few milliseconds [14, 27, 26, 18].
The microservice architecture also requires a high invocation
rate for FaaS systems, as our experiments show that 100K
RPCs are processed per second on five 8-vCPU VMs, when
running social network microservices [14]. Therefore, for a
FaaS system to efficiently support interactive microservices, it
must achieve at least two performance goals, which are not
accomplished by existing FaaS systems: (1) invocation latency
overheads are well within 100us; (2) the invocation rate must
scale to 100K/s with low CPU usage.

2. Limitations of the State of the Art

Invocation latency overheads of FaaS systems are largely over-
looked, as recent studies on serverless computing focus on data
intensive workloads [23, 16, 13,9, 12, 11, 25], where function
execution times range from hundreds of milliseconds to a few
seconds. There is no previous FaaS system that directly ad-
dresses the problem of efficient support for microsecond-scale
microservices that also provides container-level isolation.
Faasm [25] achieves invocation latency overheads of hun-
dreds of microseconds and invocation rates of 4K/s on a 8-core
machine, despite targeting at machine learning workloads, not
microservices. However, Faasm leverages software-based
fault isolation (SFI) provided by WebAssembly, which pro-
vides less isolation than containers. We prefer container-based
isolation because that is the standard set by containerized RPC
servers and provided by popular FaaS systems such as Apache

FaaS systems 50th 99th 99.9th
AWS Lambda 10.4ms | 25.8 ms | 59.9 ms
OpenFaaS [5] 1.09ms | 3.66 ms | 5.54 ms
Nightcore (external) | 285 us | 536 us | 855 us
Nightcore (internal) 39 us | 107 us | 154 us

Table 1: Invocation latencies of a warm nop function.

OpenWhisk [6] and OpenFaaS [5].
3. Key Insights

Current hardware and software systems are not well tuned for
microsecond-scale latencies [10]. To achieve our target perfor-
mance for a FaaS runtime appropriate for microservices (invo-
cation latencies of <100us and invocation rates of >100K/s),
our design must ruthlessly hunt these “killer microseconds”.
Our FaaS runtime (Nightcore) contains several innovations to
achieve microsecond-scale overheads, including a fast path
for internal function calls, low-latency message channels for
IPC, efficient threading for I/O, and function executions with
dynamically computed concurrency hints.

Existing Faa$S systems like OpenFaaS [5] and Apache Open-
Whisk [6] share a generic high-level design: all function re-
quests are received by a frontend (mostly an API gateway),
and then forwarded to independent backends where function
code executes. The frontend and backends mostly execute
on separate servers for fault tolerance, which requires invo-
cation latencies that include at least one network round trip.
Although datacenter networking performance is improving,
round-trip times (RTTs) between two VMs in the same AWS
region range from 101us to 237us [3]. Nightcore is motivated
by noticing the prevalence of internal function calls made dur-
ing function execution (see Figure 1 in the main paper). An
internal function call is one that is generated by the execution
of a microservice, not generated by a client (in which case it
would be an external function call, received by the gateway).
What we call internal function calls have been called “chained
function calls” in previous work [25]. Nightcore schedules
internal function calls on the same backend server that made
the call, eliminating a trip to through the gateway and lowering
latency (main paper § 3.2).

Nightcore’s support for internal function calls makes most
communication local, which means its inter-process commu-
nications (IPC) must be efficient. Popular, feature-rich RPC
libraries like gRPC work for IPC (over Unix sockets), but

gRPC’s protocol adds overheads of ~10us [10], motivating
Nightcore to design its own message channels for IPC (main
paper § 3.1). Nightcore’s message channels are built on top
of OS pipes, and transmit fixed-size 1KB messages, because
previous studies [18, 21] show that 1KB is sufficient for most
microservice RPCs. Our measurements show Nightcore’s mes-
sage channels deliver messages in 3.4us, while gRPC over
Unix sockets takes 13us for sending 1KB RPC payloads.

Previous work has shown microsecond-scale latencies in
Linux’s thread scheduler [10, 26], leading dataplane OSes [22,
20] to build their own schedulers for lower latency. Nightcore
relies on Linux’s scheduler, because building an efficient, time-
sharing scheduler for microsecond-scale tasks is an ongoing
research topic [24, 17, 20]. To support an invocation rate of
>100K/s, Nightcore’s engine (main paper § 4.1) uses event-
driven concurrency, allowing it to handle many concurrent
I/0O events with a small number of OS threads. Our measure-
ments show that 4 OS threads can handle an invocation rate
of 100K/s. Furthermore, I/O threads in Nightcore’s engine
can wake function worker threads (where function code are
executed) via message channels, which ensures the engine’s
dispatch suffers only a single wake-up delay from Linux’s
scheduler.

Existing FaaS systems do not provide concurrency man-
agement to applications. However, stage-based microservices
create internal load variations even under a stable external
request rate [29, 15]. Previous studies [29, 28, 15] indicate
overuse of concurrency for bursty loads can lead to worse
overall performance. Nightcore, unlike existing FaaS systems,
actively manages concurrency providing dynamically com-
puted targets for concurrent function executions that adjust
with input load (main paper § 3.3). Nightcore’s managed con-
currency flattens CPU utilization (see Figure 4 in the main
paper) such that overall performance and efficiency are im-
proved, as well as being robust under varying request rates
(main paper § 5.2).

4. Main Artifacts

We implement the Nightcore prototype with 11,549 lines of
code (mostly in C++). Our prototype currently supports server-
less functions written in C/C++, Go, Node.js, and Python.

We evaluate the Nightcore prototype on four interactive
microservices, each with a custom workload. Three are from
DeathStarBench [14] and one is from Google Cloud [4]. These
workloads are originally implemented in RPC servers, and we
port them to Nightcore. We compare Nightcore with con-
tainerized RPC servers and OpenFaaS, and conducted our
experiments using AWS EC2 VMs.

5. Key Results and Contributions

By carefully finding and eliminating microsecond-scale over-
heads, Nightcore overcomes one long-lasting limitation of
existing FaaS systems — millisecond-scale invocation latencies.

= RPC servers 4 OpenFaaS e Nightcore
20

3 12 M“‘[
C

L 8

=

R

o

v

0 1000 2000 3000 4000 5000 6000 7000

(ms)

0 1000 2000 3000 4000 5000 6000 7000

Throughput (queries per second)

Figure 1: Comparison of Nightcore with other systems on ho-
tel reservation microservices from DeathStarBench [14, 2].

Nightcore’s performance enables the first practical serverless

platform for latency-sensitive microservices.

Nightcore achieves invocation latencies of 10s of microsec-
onds (see Table 1), while providing strong, container-based
isolation between functions. Our evaluation of Nightcore not
only shows Nightcore overwhelmingly surpassing OpenFaaS
when running microservices, but also demonstrates serverless
functions can be a more efficient choice for latency-sensitive
microservices than RPC servers (Figure 1 gives one example,
and refer to main paper § 5 for more experimental results).

This paper makes the following contributions.

* Nightcore is a FaaS runtime optimized for microsecond-
scale microservices. It achieves invocation latency over-
heads under 100us and efficiently supports invocation rates
of 100K/s with low CPU usage.

* Nightcore’s design uses diverse techniques to eliminate
microsecond-scale overheads, including a fast path for in-
ternal function calls, low-latency message channels for IPC,
efficient threading for I/O, and function executions with
dynamically computed concurrency hints.

» With containerized RPC servers as the baseline, Nightcore
achieves 1.36x—2.93x higher throughput and up to 69%
reduction in tail latency, while OpenFaaS only achieves
29%-38% of baseline throughput and increases tail latency
by up to 3.4x (main paper § 5).

Why ASPLOS? Nightcore is a networked software system,
built to preserve the microsecond-scale latencies of hard-
ware. ASPLOS provides the right audience to appreciate the
crossover challenges of building such a serverless computing
system.

Citation for Most Influential Paper Award. Nightcore
showed that microsecond-scale serverless systems were possi-
ble, finally making them a viable substrate for latency-sensitive
microservices. Follow-on work sped the convergence of sys-
tem support for microservices on conventional and SmartNIC
hardware.

References

(1]
[2]

[3]

[4]
[5]
[6]

[7]

[8]
[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

AWS Lambda FAQs. [Accessed Aug, 2020].
delimitrou/DeathStarBench: Open-source benchmark suite for cloud
microservices. [Accessed Aug, 2020].
firecracker/network-performance.md at
microvm/firecracker. [Accessed Aug, 2020].

GoogleCloudPlatform/microservices-demo. [Accessed Aug, 2020].
OpenFaaS | Serverless Functions, Made Simple. [Accessed Aug, 2020].

Uncovering the magic: How serverless platforms really work! [Ac-
cessed Aug, 2020].

Why should you use microservices and containers? [Accessed Aug,
2020].

Why so slow? - Binaris Blog. [Accessed Aug, 2020].

Lixiang Ao, Liz Izhikevich, Geoffrey M. Voelker, and George Porter.
Sprocket: A serverless video processing framework. In Proceedings of
the ACM Symposium on Cloud Computing, SoCC 2018, Carisbad, CA,
USA, October 11-13, 2018, pages 263-274, 2018.

Luiz Barroso, Mike Marty, David Patterson, and Parthasarathy Ran-
ganathan. Attack of the killer microseconds. Commun. ACM,
60(4):48-54, March 2017.

Joao Carreira, Pedro Fonseca, Alexey Tumanov, Andrew Zhang, and
Randy Katz. Cirrus: A serverless framework for end-to-end ml work-
flows. In Proceedings of the ACM Symposium on Cloud Computing,
SoCC ’19, page 13-24, New York, NY, USA, 2019. Association for
Computing Machinery.

Sadjad Fouladi, Francisco Romero, Dan Iter, Qian Li, Shuvo Chat-
terjee, Christos Kozyrakis, Matei Zaharia, and Keith Winstein. From
laptop to lambda: Outsourcing everyday jobs to thousands of transient
functional containers. In 2019 USENIX Annual Technical Conference
(USENIX ATC 19), pages 475-488, Renton, WA, July 2019. USENIX
Association.

Sadjad Fouladi, Riad S. Wahby, Brennan Shacklett, Karthikeyan Vasuki
Balasubramaniam, William Zeng, Rahul Bhalerao, Anirudh Sivara-
man, George Porter, and Keith Winstein. Encoding, fast and slow:
Low-latency video processing using thousands of tiny threads. In /4th
USENIX Symposium on Networked Systems Design and Implementa-
tion (NSDI 17), pages 363-376, Boston, MA, March 2017. USENIX
Association.

Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi,
Nayantara Katarki, Ariana Bruno, Justin Hu, Brian Ritchken, Bren-
don Jackson, Kelvin Hu, Meghna Pancholi, Brett Clancy, Chris Colen,
Fukang Wen, Catherine Leung, Siyuan Wang, Leon Zaruvinsky, Ma-
teo Espinosa, Yuan He, and Christina Delimitrou. An Open-Source

Benchmark Suite for Microservices and Their Hardware-Software Im-
plications for Cloud and Edge Systems. In Proceedings of the Twenty

Fourth International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS), April 2019.
Cilin Iorgulescu, Reza Azimi, Youngjin Kwon, Sameh Elnikety, Manoj
Syamala, Vivek Narasayya, Herodotos Herodotou, Paulo Tomita, Alex
Chen, Jack Zhang, and Junhua Wang. Perfiso: Performance isolation
for commercial latency-sensitive services. In Proceedings of the 2018
USENIX Conference on Usenix Annual Technical Conference, USENIX
ATC 18, page 519-531, USA, 2018. USENIX Association.

Eric Jonas, Qifan Pu, Shivaram Venkataraman, Ion Stoica, and Ben-
jamin Recht. Occupy the cloud: Distributed computing for the 99%.
In Proceedings of the 2017 Symposium on Cloud Computing, SoCC
’17, pages 445-451, New York, NY, USA, 2017. ACM.

Kostis Kaffes, Timothy Chong, Jack Tigar Humphries, Adam Be-
lay, David Mazieres, and Christos Kozyrakis. Shinjuku: Preemptive
scheduling for pusecond-scale tail latency. In Proceedings of the 16th
USENIX Conference on Networked Systems Design and Implementa-
tion, NSDI’ 19, page 345-359, USA, 2019. USENIX Association.
Nikita Lazarev, Neil Adit, Shaojie Xiang, Zhiru Zhang, and Christina
Delimitrou. Dagger: Towards efficient rpcs in cloud microservices with
near-memory reconfigurable nics. arXiv preprint arXiv:2007.08622,
2020.

Collin Lee and John Ousterhout. Granular computing. In Proceedings
of the Workshop on Hot Topics in Operating Systems, HotOS ’19,
page 149-154, New York, NY, USA, 2019. Association for Computing
Machinery.

Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam Belay, and
Hari Balakrishnan. Shenango: Achieving high cpu efficiency for
latency-sensitive datacenter workloads. In Proceedings of the 16th
USENIX Conference on Networked Systems Design and Implementa-
tion, NSDI'" 19, page 361-377, USA, 2019. USENIX Association.

master firecracker-

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

Arash Pourhabibi, Siddharth Gupta, Hussein Kassir, Mark Sutherland,
Zilu Tian, Mario Paulo Drumond, Babak Falsafi, and Christoph Koch.
Optimus prime: Accelerating data transformation in servers. In Pro-
ceedings of the Twenty-Fifth International Conference on Architectural
Support for Programming Languages and Operating Systems, ASP-
LOS ’20, page 12031216, New York, NY, USA, 2020. Association
for Computing Machinery.

George Prekas, Marios Kogias, and Edouard Bugnion. Zygos: Achiev-
ing low tail latency for microsecond-scale networked tasks. In Pro-
ceedings of the 26th Symposium on Operating Systems Principles,
SOSP ’17, page 325-341, New York, NY, USA, 2017. Association for
Computing Machinery.

Qifan Pu, Shivaram Venkataraman, and Ion Stoica. Shuffling, fast and
slow: Scalable analytics on serverless infrastructure. In /6th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
19), pages 193-206, Boston, MA, 2019. USENIX Association.

Henry Qin, Qian Li, Jacqueline Speiser, Peter Kraft, and John Ouster-
hout. Arachne: Core-aware thread management. In Proceedings of the
13th USENIX Conference on Operating Systems Design and Implemen-
tation, OSDI’ 18, page 145-160, USA, 2018. USENIX Association.
Simon Shillaker and Peter Pietzuch. Faasm: Lightweight isolation
for efficient stateful serverless computing. In 2020 USENIX Annual
Technical Conference (USENIX ATC 20), pages 419-433. USENIX
Association, July 2020.

Akshitha Sriraman and Thomas F. Wenisch. ptune: Auto-tuned thread-
ing for oldi microservices. In Proceedings of the 13th USENIX Con-
ference on Operating Systems Design and Implementation, OSDI’18,
page 177-194, USA, 2018. USENIX Association.

M. Sutherland, S. Gupta, B. Falsafi, V. Marathe, D. Pnevmatikatos,
and A. Daglis. The nebula rpc-optimized architecture. In 2020
ACM/IEEE 47th Annual International Symposium on Computer Archi-
tecture (ISCA), pages 199-212, 2020.

Matt Welsh and David Culler. Adaptive overload control for busy
internet servers. In Proceedings of the 4th Conference on USENIX Sym-
posium on Internet Technologies and Systems - Volume 4, USITS’03,
page 4, USA, 2003. USENIX Association.

Matt Welsh, David Culler, and Eric Brewer. Seda: An architecture for
well-conditioned, scalable internet services. SIGOPS Oper: Syst. Rev.,
35(5):230-243, October 2001.

	Motivation
	Limitations of the State of the Art
	Key Insights
	Main Artifacts
	Key Results and Contributions

