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1. Motivation

The microservice architecture is a popular software engineer-
ing approach for building large-scale online services. In
microservice-based applications, loosely coupled microser-
vices communicate with each other via pre-defined APIs,
mostly using remote procedure calls (RPC) [14]. The domi-
nant design pattern for microservices is that each microservice
is an RPC server and they are deployed on top of a container
orchestration platform such as Kubernetes [14, 7, 4]. Server-
less functions, or function as a service (FaaS), provide a simple
programming model of stateless functions which are a natu-
ral substrate for implementing the stateless RPC handlers of
microservices, as an alternative to containerized RPC servers.

However, current FaaS systems have invocation latency
overheads in the 1-10s of milliseconds range [1, 8, 19] (see
Table 1), making them a poor choice for latency-sensitive in-
teractive microservices, where RPC handlers only run for hun-
dreds of microseconds to a few milliseconds [14, 27, 26, 18].
The microservice architecture also requires a high invocation
rate for FaaS systems, as our experiments show that 100K
RPCs are processed per second on five 8-vCPU VMs, when
running social network microservices [14]. Therefore, for a
FaaS system to efficiently support interactive microservices, it
must achieve at least two performance goals, which are not
accomplished by existing FaaS systems: (1) invocation latency
overheads are well within 100us; (2) the invocation rate must
scale to 100K/s with low CPU usage.

2. Limitations of the State of the Art

Invocation latency overheads of FaaS systems are largely over-
looked, as recent studies on serverless computing focus on data
intensive workloads [23, 16, 13,9, 12, 11, 25], where function
execution times range from hundreds of milliseconds to a few
seconds. There is no previous FaaS system that directly ad-
dresses the problem of efficient support for microsecond-scale
microservices that also provides container-level isolation.
Faasm [25] achieves invocation latency overheads of hun-
dreds of microseconds and invocation rates of 4K/s on a 8-core
machine, despite targeting at machine learning workloads, not
microservices. However, Faasm leverages software-based
fault isolation (SFI) provided by WebAssembly, which pro-
vides less isolation than containers. We prefer container-based
isolation because that is the standard set by containerized RPC
servers and provided by popular FaaS systems such as Apache

FaaS systems 50th 99th 99.9th
AWS Lambda 10.4ms | 25.8 ms | 59.9 ms
OpenFaaS [5] 1.09ms | 3.66 ms | 5.54 ms
Nightcore (external) | 285 us | 536 us | 855 us
Nightcore (internal) 39 us | 107 us | 154 us

Table 1: Invocation latencies of a warm nop function.

OpenWhisk [6] and OpenFaaS [5].
3. Key Insights

Current hardware and software systems are not well tuned for
microsecond-scale latencies [10]. To achieve our target perfor-
mance for a FaaS runtime appropriate for microservices (invo-
cation latencies of <100us and invocation rates of >100K/s),
our design must ruthlessly hunt these “killer microseconds”.
Our FaaS runtime (Nightcore) contains several innovations to
achieve microsecond-scale overheads, including a fast path
for internal function calls, low-latency message channels for
IPC, efficient threading for I/O, and function executions with
dynamically computed concurrency hints.

Existing Faa$S systems like OpenFaaS [5] and Apache Open-
Whisk [6] share a generic high-level design: all function re-
quests are received by a frontend (mostly an API gateway),
and then forwarded to independent backends where function
code executes. The frontend and backends mostly execute
on separate servers for fault tolerance, which requires invo-
cation latencies that include at least one network round trip.
Although datacenter networking performance is improving,
round-trip times (RTTs) between two VMs in the same AWS
region range from 101us to 237us [3]. Nightcore is motivated
by noticing the prevalence of internal function calls made dur-
ing function execution (see Figure 1 in the main paper). An
internal function call is one that is generated by the execution
of a microservice, not generated by a client (in which case it
would be an external function call, received by the gateway).
What we call internal function calls have been called “chained
function calls” in previous work [25]. Nightcore schedules
internal function calls on the same backend server that made
the call, eliminating a trip to through the gateway and lowering
latency (main paper § 3.2).

Nightcore’s support for internal function calls makes most
communication local, which means its inter-process commu-
nications (IPC) must be efficient. Popular, feature-rich RPC
libraries like gRPC work for IPC (over Unix sockets), but



gRPC’s protocol adds overheads of ~10us [10], motivating
Nightcore to design its own message channels for IPC (main
paper § 3.1). Nightcore’s message channels are built on top
of OS pipes, and transmit fixed-size 1KB messages, because
previous studies [18, 21] show that 1KB is sufficient for most
microservice RPCs. Our measurements show Nightcore’s mes-
sage channels deliver messages in 3.4us, while gRPC over
Unix sockets takes 13us for sending 1KB RPC payloads.

Previous work has shown microsecond-scale latencies in
Linux’s thread scheduler [10, 26], leading dataplane OSes [22,
20] to build their own schedulers for lower latency. Nightcore
relies on Linux’s scheduler, because building an efficient, time-
sharing scheduler for microsecond-scale tasks is an ongoing
research topic [24, 17, 20]. To support an invocation rate of
>100K/s, Nightcore’s engine (main paper § 4.1) uses event-
driven concurrency, allowing it to handle many concurrent
I/0O events with a small number of OS threads. Our measure-
ments show that 4 OS threads can handle an invocation rate
of 100K/s. Furthermore, I/O threads in Nightcore’s engine
can wake function worker threads (where function code are
executed) via message channels, which ensures the engine’s
dispatch suffers only a single wake-up delay from Linux’s
scheduler.

Existing FaaS systems do not provide concurrency man-
agement to applications. However, stage-based microservices
create internal load variations even under a stable external
request rate [29, 15]. Previous studies [29, 28, 15] indicate
overuse of concurrency for bursty loads can lead to worse
overall performance. Nightcore, unlike existing FaaS systems,
actively manages concurrency providing dynamically com-
puted targets for concurrent function executions that adjust
with input load (main paper § 3.3). Nightcore’s managed con-
currency flattens CPU utilization (see Figure 4 in the main
paper) such that overall performance and efficiency are im-
proved, as well as being robust under varying request rates
(main paper § 5.2).

4. Main Artifacts

We implement the Nightcore prototype with 11,549 lines of
code (mostly in C++). Our prototype currently supports server-
less functions written in C/C++, Go, Node.js, and Python.

We evaluate the Nightcore prototype on four interactive
microservices, each with a custom workload. Three are from
DeathStarBench [14] and one is from Google Cloud [4]. These
workloads are originally implemented in RPC servers, and we
port them to Nightcore. We compare Nightcore with con-
tainerized RPC servers and OpenFaaS, and conducted our
experiments using AWS EC2 VMs.

5. Key Results and Contributions

By carefully finding and eliminating microsecond-scale over-
heads, Nightcore overcomes one long-lasting limitation of
existing FaaS systems — millisecond-scale invocation latencies.
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Figure 1: Comparison of Nightcore with other systems on ho-
tel reservation microservices from DeathStarBench [14, 2].

Nightcore’s performance enables the first practical serverless

platform for latency-sensitive microservices.

Nightcore achieves invocation latencies of 10s of microsec-
onds (see Table 1), while providing strong, container-based
isolation between functions. Our evaluation of Nightcore not
only shows Nightcore overwhelmingly surpassing OpenFaaS
when running microservices, but also demonstrates serverless
functions can be a more efficient choice for latency-sensitive
microservices than RPC servers (Figure 1 gives one example,
and refer to main paper § 5 for more experimental results).

This paper makes the following contributions.

* Nightcore is a FaaS runtime optimized for microsecond-
scale microservices. It achieves invocation latency over-
heads under 100us and efficiently supports invocation rates
of 100K/s with low CPU usage.

* Nightcore’s design uses diverse techniques to eliminate
microsecond-scale overheads, including a fast path for in-
ternal function calls, low-latency message channels for IPC,
efficient threading for I/O, and function executions with
dynamically computed concurrency hints.

» With containerized RPC servers as the baseline, Nightcore
achieves 1.36x—2.93x higher throughput and up to 69%
reduction in tail latency, while OpenFaaS only achieves
29%-38% of baseline throughput and increases tail latency
by up to 3.4x (main paper § 5).

Why ASPLOS? Nightcore is a networked software system,
built to preserve the microsecond-scale latencies of hard-
ware. ASPLOS provides the right audience to appreciate the
crossover challenges of building such a serverless computing
system.

Citation for Most Influential Paper Award. Nightcore
showed that microsecond-scale serverless systems were possi-
ble, finally making them a viable substrate for latency-sensitive
microservices. Follow-on work sped the convergence of sys-
tem support for microservices on conventional and SmartNIC
hardware.
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