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1. Motivation
Modern multicore architectures, such as ARM, Power, and
RISC-V, follow weak memory models (WMMs) [4, 12, 17, 30],
which allow them to execute independent memory operations
out of order. WMMs are becoming increasingly pervasive (lat-
est releases from Apple [33], Microsoft [32] and Huawei [20]
run on ARM). So, a lot of concurrent software designed
for older, fairly strong memory models such as SPARC/x86
TSO [31] needs to be ported to these modern WMMs.

The good news is that most software use only synchroniza-
tion primitives for inter-thread communication (e.g., spinlock,
mutexes, read-write locks); provided synchronization primi-
tives are correct, such software work on WMMs out of the
box [10]. The bad news is that the synchronization primitives
themselves heavily rely on the order of a few key memory
operations, and can break in subtle and non-reproducible
ways if these operations happen to be executed out of order.
Thus WMMs include so-called barriers, which enforce
some ordering among memory operations by sacrificing the
substantial performance gains of WMMs.

As synchronization primitives often lie on the critical path,
unnecessary or overly-constrained barriers in synchronization
primitives affect the performance of the complete system. For
example, a single unnecessary barrier in the spinlock of Linux
reduced the performance of the whole kernel by 4% [3]. For
this reason, experts spend time and effort in identifying the
key memory operations that need to be executed in order, and
optimizing the usage of barriers accordingly [1, 2, 16, 29, 35].

Unfortunately, identifying the necessary order of memory
operations is an error-prone task, even for experts. For exam-
ple, the optimization of the barriers in the Linux qspinlock
introduced a bug [29] that remained unfixed for three years
[16]. This clearly exemplifies the need for automated solutions
to correctly add missing barriers and remove redundant ones.

2. Limitations of the State of the Art
The literature provides two basic approaches for inserting
barriers for WMMs: either by static analysis (e.g., as in

Musketeer [11]) or by robustness checking [13]. Both insert
barriers to enforce sequential consistency. They have two
limitations: (1) they cannot maximally relax fences because
they lift the program to achieve sequentially consistent
semantics at the memory access level, which may be stronger
than necessary; and (2) they only support explicit fences,
which incur much higher overhead than implicit barriers of
atomic operations on ARM [28].

We propose an alternative approach that iteratively
inserts/removes barriers in the code and checks the correctness
of the mutated code with model checkers. While our approach
overcomes the limitations of prior approaches, it is not viable
with the current state of the art model checking on WMMs.

The problem is that model checking on WMMs either does
not scale or cannot detect liveness violations (hangs). Model
checkers for WMMs are of two types:

• Stateful model checkers [4, 7, 14, 19, 21, 27, 36] record
complete program states, and do not scale beyond tiny
examples. For instance, two recent stateful model checkers
for WMMs, Power2SC [7] and rmem [4], took more than
half an hour and multiple days, respectively, when we ran
them even on small synchronization primitives, in terms of
number of accesses to shared memory and code size.

• Stateless model checkers [8, 9, 23, 24, 25, 26], on the other
hand, do not record program states and thus by design scale
better, but cannot detect non-terminating program execu-
tions. Unfortunately, without detecting non-terminating
program executions, optimization would invariably overly
relax the barriers and cause the program to hang on real
hardware – we experienced this firsthand when we used the
recent stateless model checker GenMC [23].

3. Key Insights
Three key insights allow us to design a novel approach to
efficiently optimize barriers of synchronization primitives on
WMMs, while producing maximally-relaxed results and en-
suring safety and termination with a model checker.



Detecting non-termination. We observe that non-
termination in synchronization primitives is exclusively
caused by await loops, i.e., loops that are side-effect-free
except in their last iteration. For programs whose non-
terminations are confined to such loops, we show that they
can be checked by a finite enumeration of finite executions
with a certain property. By applying this insight to stateless
model checking (SMC), we make it possible for the first time
to automatically detect non-termination on WMMs.

Exploiting monotonicity. The state space of possible bar-
rier combinations is huge (exponential in the size of the pro-
gram). So, it is hopeless to naively search through it (e.g., with
a breadth-first-search). Fortunately, barrier relaxations are
monotonic [34]: relaxing an already incorrect barrier com-
bination can never produce a correct one. Therefore, we can
gradually relax one barrier at a time until no further correct
relaxation is possible, achieving linear complexity.

Speculating correctness. Model checking a synchroniza-
tion primitive with a correct barrier combination requires ex-
ploring all executions, whereas the same primitive with an
incorrect barrier combination only requires exploring one in-
correct execution. The former takes significantly longer than
the latter, often two orders of magnitude. By using adaptive
timeouts, we can speculate on the correctness of the barrier
combination, aborting long runs of the model checker after the
timeout, provided we fully verify the final combination found
in the iterative optimization.

4. Main Artifacts
Our main artifact is the VSYNC framework, which allows
one to efficiently optimize the barriers in synchronization
primitives on WMMs, producing maximally-relaxed results
and ensuring safety and termination. VSYNC consists of two
main novel components (see Fig. 1):
• Adaptive linear relaxation (ALR), an efficient barrier opti-

mization algorithm based on adaptive speculation.
• Await model checking (AMC), an extension of SMC that

can detect non-terminating await loops on WMMs.
We developed AMC in C++ on top of GenMC [24, 26], a
highly advanced SMC from the literature. We implemented
ALR and supporting components in Golang.

We ran VSYNC on more than 15 synchronization primitives
from both the literature and industry. With AMC we could
detect bugs in open source and industry code [18, 22] imple-
mented for WMM by experts. We evaluated our optimized
versions against comparable implementations by experts with
several microbenchmarks as well as a concurrent DB on high
performance ARM servers.

Our secondary artifact is a set of provably-correct high-
performance synchronization primitives, which are suitable
for practical use in industry.
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Figure 1: vsyncer optimize reports the maximally-relaxed
barrier-mode combination of a synchronization primitive.

5. Key Results and Contributions
Our contributions are:
• ALR: a novel algorithm for traversing the exponential

search space of barrier optimizations in a linear number
of steps, which caps all but the last run of the model checker
with an adaptively estimated timeout.

• AMC: a novel method for detecting certain kinds of non-
terminating loops on WMMs, which suffices for verifying
synchronization primitives.

Our key results are:
• We have verified and optimized more than 15 synchroniza-

tion primitives from both the literature and industry – most
of which are formally verified on WMMs for the first time.

• VSync discovered the following previously unknown bugs:
◦ An await violation bug in the MCS lock of DPDK [18], re-

ported and fixed in [5]. This bug exemplifies the difficulty
in reasoning about WMM. Despite being a single-line
bug fix, the discussion with the ARM engineers extended
over 3 months until the patch was accepted.

◦ A mutual exclusion violation bug in the CLH lock of
seL4 [22], reported and fixed in [6]. The seL4 is a flag-
ship of formal verification. The bug was in one of the
few components that their verification did not cover, but
which is extremely critical: the big kernel lock. This
shows that VSync can complement functional formal
verification as applied in seL4.

• VSYNC provides barrier optimizations comparable to ex-
perts, in a fraction of time: while experts optimized the
barriers of Linux qspinlock [15] over several iterations over
the course of years, VSYNC finds a comparable barrier
combination within 11 minutes.
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