
VSYNC: Push-Button Verification and Optimization for Synchronization
Primitives on Weak Memory Models

(Extended Abstract)
Jonas Oberhauser1,2, Rafael Lourenco de Lima Chehab1,2, Diogo Behrens1,2, Ming Fu1,2,

Antonio Paolillo1,2, Lilith Oberhauser1,2, Koustubha Bhat1,2, Yuzhong Wen2, Haibo Chen2,3, Jaeho Kim1,2,
and Viktor Vafeiadis4

1Huawei Dresden Research Center, 2Huawei OS Kernel Lab, 3Shanghai Jiao Tong University,
4Max Planck Institute for Software Systems

1. Motivation
Modern multicore architectures, such as ARM, Power, and
RISC-V, follow weak memory models (WMMs) [4, 12, 17, 30],
which allow them to execute independent memory operations
out of order. WMMs are becoming increasingly pervasive (lat-
est releases from Apple [33], Microsoft [32] and Huawei [20]
run on ARM). So, a lot of concurrent software designed
for older, fairly strong memory models such as SPARC/x86
TSO [31] needs to be ported to these modern WMMs.

The good news is that most software use only synchroniza-
tion primitives for inter-thread communication (e.g., spinlock,
mutexes, read-write locks); provided synchronization primi-
tives are correct, such software work on WMMs out of the
box [10]. The bad news is that the synchronization primitives
themselves heavily rely on the order of a few key memory
operations, and can break in subtle and non-reproducible
ways if these operations happen to be executed out of order.
Thus WMMs include so-called barriers, which enforce
some ordering among memory operations by sacrificing the
substantial performance gains of WMMs.

As synchronization primitives often lie on the critical path,
unnecessary or overly-constrained barriers in synchronization
primitives affect the performance of the complete system. For
example, a single unnecessary barrier in the spinlock of Linux
reduced the performance of the whole kernel by 4% [3]. For
this reason, experts spend time and effort in identifying the
key memory operations that need to be executed in order, and
optimizing the usage of barriers accordingly [1, 2, 16, 29, 35].

Unfortunately, identifying the necessary order of memory
operations is an error-prone task, even for experts. For exam-
ple, the optimization of the barriers in the Linux qspinlock
introduced a bug [29] that remained unfixed for three years
[16]. This clearly exemplifies the need for automated solutions
to correctly add missing barriers and remove redundant ones.

2. Limitations of the State of the Art
The literature provides two basic approaches for inserting
barriers for WMMs: either by static analysis (e.g., as in

Musketeer [11]) or by robustness checking [13]. Both insert
barriers to enforce sequential consistency. They have two
limitations: (1) they cannot maximally relax fences because
they lift the program to achieve sequentially consistent
semantics at the memory access level, which may be stronger
than necessary; and (2) they only support explicit fences,
which incur much higher overhead than implicit barriers of
atomic operations on ARM [28].

We propose an alternative approach that iteratively
inserts/removes barriers in the code and checks the correctness
of the mutated code with model checkers. While our approach
overcomes the limitations of prior approaches, it is not viable
with the current state of the art model checking on WMMs.

The problem is that model checking on WMMs either does
not scale or cannot detect liveness violations (hangs). Model
checkers for WMMs are of two types:

• Stateful model checkers [4, 7, 14, 19, 21, 27, 36] record
complete program states, and do not scale beyond tiny
examples. For instance, two recent stateful model checkers
for WMMs, Power2SC [7] and rmem [4], took more than
half an hour and multiple days, respectively, when we ran
them even on small synchronization primitives, in terms of
number of accesses to shared memory and code size.

• Stateless model checkers [8, 9, 23, 24, 25, 26], on the other
hand, do not record program states and thus by design scale
better, but cannot detect non-terminating program execu-
tions. Unfortunately, without detecting non-terminating
program executions, optimization would invariably overly
relax the barriers and cause the program to hang on real
hardware – we experienced this firsthand when we used the
recent stateless model checker GenMC [23].

3. Key Insights
Three key insights allow us to design a novel approach to
efficiently optimize barriers of synchronization primitives on
WMMs, while producing maximally-relaxed results and en-
suring safety and termination with a model checker.



Detecting non-termination. We observe that non-
termination in synchronization primitives is exclusively
caused by await loops, i.e., loops that are side-effect-free
except in their last iteration. For programs whose non-
terminations are confined to such loops, we show that they
can be checked by a finite enumeration of finite executions
with a certain property. By applying this insight to stateless
model checking (SMC), we make it possible for the first time
to automatically detect non-termination on WMMs.

Exploiting monotonicity. The state space of possible bar-
rier combinations is huge (exponential in the size of the pro-
gram). So, it is hopeless to naively search through it (e.g., with
a breadth-first-search). Fortunately, barrier relaxations are
monotonic [34]: relaxing an already incorrect barrier com-
bination can never produce a correct one. Therefore, we can
gradually relax one barrier at a time until no further correct
relaxation is possible, achieving linear complexity.

Speculating correctness. Model checking a synchroniza-
tion primitive with a correct barrier combination requires ex-
ploring all executions, whereas the same primitive with an
incorrect barrier combination only requires exploring one in-
correct execution. The former takes significantly longer than
the latter, often two orders of magnitude. By using adaptive
timeouts, we can speculate on the correctness of the barrier
combination, aborting long runs of the model checker after the
timeout, provided we fully verify the final combination found
in the iterative optimization.

4. Main Artifacts
Our main artifact is the VSYNC framework, which allows
one to efficiently optimize the barriers in synchronization
primitives on WMMs, producing maximally-relaxed results
and ensuring safety and termination. VSYNC consists of two
main novel components (see Fig. 1):
• Adaptive linear relaxation (ALR), an efficient barrier opti-

mization algorithm based on adaptive speculation.
• Await model checking (AMC), an extension of SMC that

can detect non-terminating await loops on WMMs.
We developed AMC in C++ on top of GenMC [24, 26], a
highly advanced SMC from the literature. We implemented
ALR and supporting components in Golang.

We ran VSYNC on more than 15 synchronization primitives
from both the literature and industry. With AMC we could
detect bugs in open source and industry code [18, 22] imple-
mented for WMM by experts. We evaluated our optimized
versions against comparable implementations by experts with
several microbenchmarks as well as a concurrent DB on high
performance ARM servers.

Our secondary artifact is a set of provably-correct high-
performance synchronization primitives, which are suitable
for practical use in industry.

sync_prim.c

VSYNC
atomics

clang

barrier
analyzer

mutation
checker AMC

generic
client code

ALR
optimizer

optimization
report

input IR mutated IR

result

#barriers

barrier-mode
combination

statusimports

% vsyncer optimize sync_prim.c

Figure 1: vsyncer optimize reports the maximally-relaxed
barrier-mode combination of a synchronization primitive.

5. Key Results and Contributions
Our contributions are:
• ALR: a novel algorithm for traversing the exponential

search space of barrier optimizations in a linear number
of steps, which caps all but the last run of the model checker
with an adaptively estimated timeout.

• AMC: a novel method for detecting certain kinds of non-
terminating loops on WMMs, which suffices for verifying
synchronization primitives.

Our key results are:
• We have verified and optimized more than 15 synchroniza-

tion primitives from both the literature and industry – most
of which are formally verified on WMMs for the first time.

• VSync discovered the following previously unknown bugs:
◦ An await violation bug in the MCS lock of DPDK [18], re-

ported and fixed in [5]. This bug exemplifies the difficulty
in reasoning about WMM. Despite being a single-line
bug fix, the discussion with the ARM engineers extended
over 3 months until the patch was accepted.

◦ A mutual exclusion violation bug in the CLH lock of
seL4 [22], reported and fixed in [6]. The seL4 is a flag-
ship of formal verification. The bug was in one of the
few components that their verification did not cover, but
which is extremely critical: the big kernel lock. This
shows that VSync can complement functional formal
verification as applied in seL4.

• VSYNC provides barrier optimizations comparable to ex-
perts, in a fraction of time: while experts optimized the
barriers of Linux qspinlock [15] over several iterations over
the course of years, VSYNC finds a comparable barrier
combination within 11 minutes.

2



References
[1] Qspinlock code at version 4.4 of Linux Kernel. https:

//git.kernel.org/pub/scm/linux/kernel/git/

torvalds/linux.git/tree/kernel/locking/qsp

inlock.c?h=v4.4.

[2] Qspinlock code at version 5.6 of Linux Kernel. https:
//git.kernel.org/pub/scm/linux/kernel/git/

torvalds/linux.git/tree/kernel/locking/qsp

inlock.c?h=v5.6.

[3] spin_unlock optimization(i386), 1999. https://marc
.info/?l=linux-kernel&m=94318921016232&w

=2.

[4] rmem: Executable concurrency models for ARMv8,
RISC-V, Power, and x86, 2009. https://github

.com/rems-project/rmem.

[5] Await termination violation bug fix in DPDK, 2020. ht
tp://patches.dpdk.org/patch/75983/.

[6] Mutual exclusion bug fix in seL4, 2020. https://gith
ub.com/seL4/seL4/pull/199/commits.

[7] Parosh Abdulla, Mohamed Faouzi Atig, Ahmed Boua-
jjani, and Phong Ngo. Context-Bounded Analysis for
POWER. pages 56–74, 03 2017.

[8] Parosh Aziz Abdulla, Stavros Aronis, Mohamed Faouzi
Atig, Bengt Jonsson, Carl Leonardsson, and Konstanti-
nos Sagonas. Stateless model checking for TSO and
PSO. Acta Informatica, 54(8):789–818, 2017.

[9] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Bengt Jon-
sson, and Carl Leonardsson. Stateless model checking
for POWER. In International Conference on Computer
Aided Verification, pages 134–156. Springer, 2016.

[10] Sarita V. Adve and Mark D. Hill. Weak ordering—a new
definition. In Proceedings of the 17th Annual Interna-
tional Symposium on Computer Architecture, ISCA ’90,
page 2–14, New York, NY, USA, 1990. Association for
Computing Machinery.

[11] Jade Alglave, Daniel Kroening, Vincent Nimal, and
Daniel Poetzl. Don’t sit on the fence. In International
Conference on Computer Aided Verification, pages 508–
524. Springer, 2014.

[12] Jade Alglave, Luc Maranget, and Michael Tautschnig.
Herding cats: Modelling, simulation, testing, and data
mining for weak memory. ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS), 36(2):1–
74, 2014.

[13] Ahmed Bouajjani, Egor Derevenetc, and Roland Meyer.
Robustness against relaxed memory models. In Software
Engineering, volume P-227 of LNI, pages 85–86. GI,
2014.

[14] Sebastian Burckhardt. Memory model sensitive analysis
of concurrent data types. Dissertations available from
ProQuest, 01 2007.

[15] Jonathan Corbet. locks and qspinlocks. https://lwn.
net/Articles/590243/, 2014.

[16] Will Deacon. locking/qspinlock: Ensure node is initial-
ized before updating prev->next, Feb 13, 2018. https:
//git.kernel.org/pub/scm/linux/kernel/gi

t/torvalds/linux.git/commit/?id=95bcade33a

8a.

[17] Shaked Flur, Kathryn E Gray, Christopher Pulte, Susmit
Sarkar, Ali Sezgin, Luc Maranget, Will Deacon, and
Peter Sewell. Modelling the ARMv8 architecture, op-
erationally: concurrency and ISA. In Proceedings of
the 43rd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 608–621,
2016.

[18] Linux Foundation. Data Plane Development Kit (DPDK),
2015.

[19] Gerard J Holzmann and William Slattery Lieberman.
Design and validation of computer protocols, volume
512. Prentice hall Englewood Cliffs, 1991.

[20] Huawei. Huawei Unveils Industry’s Highest-
Performance ARM-based CPU, Jan 2019. https:

//www.huawei.com/en/news/2019/1/huawei-u

nveils-highest-performance-arm-based-cpu.

[21] Bengt Jonsson. State-space exploration for concurrent
algorithms under weak memory orderings: (preliminary
version). SIGARCH Comput. Archit. News, 36(5):65–71,
June 2009.

[22] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June
Andronick, David Cock, Philip Derrin, Dhammika Elka-
duwe, Kai Engelhardt, Rafal Kolanski, Michael Norrish,
et al. seL4: Formal verification of an OS kernel. In
Proceedings of the ACM SIGOPS 22nd symposium on
Operating systems principles, pages 207–220, 2009.

[23] Michalis Kokologiannakis, Azalea Raad, and Viktor
Vafeiadis. Effective lock handling in stateless model
checking. Proceedings of the ACM on Programming
Languages, 3(OOPSLA):1–26, 2019.

[24] Michalis Kokologiannakis, Azalea Raad, and Viktor
Vafeiadis. Model checking for weakly consistent li-
braries. In Proceedings of the 40th ACM SIGPLAN

3

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/kernel/locking/qspinlock.c?h=v4.4
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/kernel/locking/qspinlock.c?h=v4.4
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/kernel/locking/qspinlock.c?h=v4.4
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/kernel/locking/qspinlock.c?h=v4.4
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/kernel/locking/qspinlock.c?h=v5.6
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/kernel/locking/qspinlock.c?h=v5.6
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/kernel/locking/qspinlock.c?h=v5.6
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/kernel/locking/qspinlock.c?h=v5.6
https://marc.info/?l=linux-kernel&m=94318921016232&w=2
https://marc.info/?l=linux-kernel&m=94318921016232&w=2
https://marc.info/?l=linux-kernel&m=94318921016232&w=2
https://github.com/rems-project/rmem
https://github.com/rems-project/rmem
http://patches.dpdk.org/patch/75983/
http://patches.dpdk.org/patch/75983/
https://github.com/seL4/seL4/pull/199/commits
https://github.com/seL4/seL4/pull/199/commits
https://lwn.net/Articles/590243/
https://lwn.net/Articles/590243/
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=95bcade33a8a
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=95bcade33a8a
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=95bcade33a8a
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=95bcade33a8a
https://www.huawei.com/en/news/2019/1/huawei-unveils-highest-performance-arm-based-cpu
https://www.huawei.com/en/news/2019/1/huawei-unveils-highest-performance-arm-based-cpu
https://www.huawei.com/en/news/2019/1/huawei-unveils-highest-performance-arm-based-cpu


Conference on Programming Language Design and Im-
plementation, PLDI 2019, pages 96–110, New York, NY,
USA, 2019. Association for Computing Machinery.

[25] Michalis Kokologiannakis and Konstantinos Sagonas.
Stateless model checking of the Linux kernel’s hierarchi-
cal read-copy-update (tree RCU). In Proceedings of the
24th ACM SIGSOFT International SPIN Symposium on
Model Checking of Software, pages 172–181, 2017.

[26] Michalis Kokologiannakis and Viktor Vafeiadis. Hmc:
Model checking for hardware memory models. In Pro-
ceedings of the Twenty-Fifth International Conference
on Architectural Support for Programming Languages
and Operating Systems, pages 1157–1171, 2020.

[27] Michael Kuperstein, Martin Vechev, and Eran Yahav.
Automatic inference of memory fences. SIGACT News,
43(2):108–123, June 2012.

[28] Nian Liu, Binyu Zang, and Haibo Chen. No barrier
in the road: a comprehensive study and optimization
of arm barriers. In Proceedings of the 25th ACM SIG-
PLAN Symposium on Principles and Practice of Parallel
Programming, pages 348–361, 2020.

[29] Waiman Long. locking/qspinlock: Use _acquire/_re-
lease() versions of cmpxchg() & xchg(), Nov 10, 2015.
https://git.kernel.org/pub/scm/linux/kerne

l/git/torvalds/linux.git/commit/?id=64d816

cba06c.

[30] RISC-V. The risc-v instruction set manual. https:

//content.riscv.org/wp-content/uploads/201

9/06/riscv-spec.pdf. Accessed: 2020-03-06.

[31] Peter Sewell, Susmit Sarkar, Scott Owens,
Francesco Zappa Nardelli, and Magnus O. Myreen.

X86-tso: A rigorous and usable programmer’s model for
x86 multiprocessors. Commun. ACM, 53(7):89–97, July
2010.

[32] Techcrunch.com. Microsoft updates its Arm-based Sur-
face Pro X tablet with a faster CPU, 2020. https:

//techcrunch.com/2020/10/01/microsoft-upda

tes-its-arm-based-surface-pro-x-tablet-w

ith-a-faster-cpu/.

[33] The Guardian. Apple ditches Intel for ARM processors
in Mac computers with Big Sur, 2020. https://www.
theguardian.com/technology/2020/jun/22/app

le-ditches-intel-for-arm-processors-in-b

ig-sur-computers.

[34] Viktor Vafeiadis, Thibaut Balabonski, Soham
Chakraborty, Robin Morisset, and Francesco
Zappa Nardelli. Common compiler optimisations
are invalid in the C11 memory model and what we
can do about it. In Proceedings of the 42nd Annual
ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 209–220, 2015.

[35] Pan Xinhui. locking/qspinlock: Use atomic_sub_return_-
release() in queued_spin_unlock(), Jun 3, 2016. https:
//git.kernel.org/pub/scm/linux/kernel/gi

t/torvalds/linux.git/commit/?id=ca50e426f9

6c.

[36] Yuan Yu, Panagiotis Manolios, and Leslie Lamport.
Model checking TLA+ specifications. In Advanced Re-
search Working Conference on Correct Hardware Design
and Verification Methods, pages 54–66. Springer, 1999.

4

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=64d816cba06c
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=64d816cba06c
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=64d816cba06c
https://content.riscv.org/wp-content/uploads/2019/06/riscv-spec.pdf
https://content.riscv.org/wp-content/uploads/2019/06/riscv-spec.pdf
https://content.riscv.org/wp-content/uploads/2019/06/riscv-spec.pdf
https://techcrunch.com/2020/10/01/microsoft-updates-its-arm-based-surface-pro-x-tablet-with-a-faster-cpu/
https://techcrunch.com/2020/10/01/microsoft-updates-its-arm-based-surface-pro-x-tablet-with-a-faster-cpu/
https://techcrunch.com/2020/10/01/microsoft-updates-its-arm-based-surface-pro-x-tablet-with-a-faster-cpu/
https://techcrunch.com/2020/10/01/microsoft-updates-its-arm-based-surface-pro-x-tablet-with-a-faster-cpu/
https://www.theguardian.com/technology/2020/jun/22/apple-ditches-intel-for-arm-processors-in-big-sur-computers
https://www.theguardian.com/technology/2020/jun/22/apple-ditches-intel-for-arm-processors-in-big-sur-computers
https://www.theguardian.com/technology/2020/jun/22/apple-ditches-intel-for-arm-processors-in-big-sur-computers
https://www.theguardian.com/technology/2020/jun/22/apple-ditches-intel-for-arm-processors-in-big-sur-computers
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=ca50e426f96c
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=ca50e426f96c
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=ca50e426f96c
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=ca50e426f96c

	Motivation
	Limitations of the State of the Art
	Key Insights
	Main Artifacts
	Key Results and Contributions

