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Abstract—We present a quantum circuit simulation toolchain
targeted for simulating variational algorithms. We do so by
encoding quantum amplitudes and noise probabilities in a
probabilistic graphical model, and we use knowledge compi-
lation to compile the circuits to logical equations that support
efficient repeated simulation of and sampling from quantum
circuits for different parameters. Compared to state-of-the-art
state vector and density matrix quantum circuit simulators,
our simulation approach offers greater performance when
sampling from circuits with at least eight to 20 qubits and
with around 12 operations on each qubit. And versus quantum
circuit simulation techniques based on tensor network contrac-
tion, our simulation approach offers a 66 times reduction in
sampling cost for simulating ideal shallow quantum circuits
with 32 qubits, making the approach ideal for simulating near-
term variational quantum algorithms.

1. Motivation & Key Insights

Due to the limitations of existing quantum prototypes,
quantum circuit simulation continues to be a vital tool
for validating next generation quantum computers and for
studying variational quantum algorithms. Existing quantum
circuit simulators do not address the common traits of varia-
tional algorithms, namely: 1) their ability to work with noisy
qubits and operations, 2) their repeated execution of the
same circuits but with different parameters, and 3) the fact
that they sample from circuit final wavefunctions to drive
an optimization routine [2]. Quantum computing research
would benefit from a simulator that supports variational
algorithms specifically, which would require a simulator that
1) simulates the probabilistic effects of noise, 2) can handle
more qubits, and 3) can reuse computation results between
simulation runs with different parameters.

The key insight of our paper is that knowledge compila-
tion—–a technique for efficient repeated inference originat-
ing in artificial intelligence research—can be generalized to
work on complex-valued quantum amplitudes, such that the
technique serves as the basis for a quantum circuit simula-
tion toolchain geared for variational quantum algorithms.
In knowledge compilation, AI models such as Bayesian
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(a) Versus state vector (qsim) and tensor network (qTorch [3]) for
ideal circuits
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(b) Versus density matrix simulation (Cirq) for noisy circuits

Figure 1: Knowledge compilation sampling performance.

networks encode probabilistic knowledge about the world in
a factorized format. The Bayesian networks compile down
to minimized data structures called arithmetic circuits (ACs)
that enable repeated inference and sampling queries with
different parameters and new pieces of evidence [1]. These
features of the knowledge compilation approach—namely,
1) the ability to represent and manipulate probabilistic
information, 2) the ability to compile probabilistic model
structural information into minimized formats, 3) the ability
to efficiently sample from the same model but for varying
parameters and evidence—match well with the requirements
for variational quantum algorithm simulation.

2. Our Knowledge Compilation Approach

We built a knowledge compilation toolchain for quantum
algorithm simulation that excels at simulating noisy circuits
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Figure 2: Toolchain stages and intermediate representations for quantum algorithm simulation via knowledge compilation.

TABLE 1: Program transformations converting a noisy quantum circuit to conjunctive normal form (CNF).

Quantum circuit
semantics encoded

The logical sentences comprising the CNF for a noisy Bell state quantum circuit example Compilation / simplification rules

Qubits take on bi-
nary values; supply
initial qubit values

q0m0 = |0〉 ⊕ q0m0 = |1〉
q0m0 = |0〉
q0m1 = |0〉 ⊕ q0m1 = |1〉

q1m0 = |0〉 ⊕ q1m0 = |1〉
q1m0 = |0〉
q1m3 = |0〉 ⊕ q1m3 = |1〉

Combine initial value sentences into binary
constraint sentences using logical unit res-
olution.

Hadamard gate q0m0 = |0〉 ∧ q0m1 = |0〉 =⇒ + 1√
2

q0m0 = |1〉 ∧ q0m1 = |0〉 =⇒ + 1√
2

q0m0 = |0〉 ∧ q0m1 = |1〉 =⇒ + 1√
2

q0m0 = |1〉 ∧ q0m1 = |1〉 =⇒ − 1√
2

Weight variables stand in for parameters for
amplitudes or probabilities; compiler stores
equal-value parameters as a single variable.

Phase damping
noise channel

q0m2rv = 0⊕ q0m2rv = 1
q0m1 = |0〉 =⇒ q0m2rv = 0

q0m1 = |1〉 ∧ q0m2rv = 0 =⇒ +0.8
q0m1 = |1〉 ∧ q0m2rv = 1 =⇒ −0.6

The simulator resolves variables with val-
ues that change for repeated simulations.

CNOT gate q0m1 = |0〉∧q1m0 = |0〉 =⇒ q1m3 = |0〉
q0m1 = |0〉∧q1m0 = |1〉 =⇒ q1m3 = |1〉

q0m1 = |1〉∧q1m0 = |0〉 =⇒ q1m3 = |1〉
q0m1 = |1〉∧q1m0 = |1〉 =⇒ q1m3 = |0〉

Deterministic parameters (i.e., 0 or 1) are
factored to logic without weight variables.

for variational algorithms (Fig. 2). It comprises:
1) A front-end for converting noisy quantum circuits

(specified in Google’s Cirq framework1) to complex-
valued Bayesian networks [4], which we extend to
correctly encode quantum noise mixtures and chan-
nels. Compared to conventional quantum circuits where
complex-valued quantum amplitudes and real-valued
noise probabilities are treated separately, the Bayesian
network encoding unifies quantum states and noise
events in a single representation.

2) A compiler that converts Bayesian networks represent-
ing noisy quantum circuits into conjunctive normal
form (CNF) logic equations. The CNFs encode the
quantum circuits’ topological information. The sets of
logic variable assignments that satisfy the CNF corre-
spond to all sets of qubit state assignments that are con-
sistent with a quantum circuit’s semantics (Tab. 1). The
structural information can be reused across simulations
independently of quantum amplitude and noise proba-
bility parameters, which vary across simulations. More
importantly, CNF logical equation encodings for quan-
tum circuits permits using logical equation compilers
based on SAT solvers to minimize the representation.

3) A compiler that converts CNFs to ACs. An AC enu-
merates and assigns a weight value to each set of
variable assignments that satisfy a logical equation [1].
Summing the weights across all qubit state assignments
results in the output amplitudes that we seek to find in
the quantum circuit simulation task. The ACs enable
the quantum circuit simulator to find the probability
amplitude for an outcome, without incurring the cost
of finding the amplitudes of intermediate qubit states.
The ACs further memoize the calculated results from

1. https://github.com/quantumlib/Cirq

prior queries such that subsequent queries update val-
ues only as necessary. The ACs also enable a Markov
chain Monte Carlo procedure for sampling sets of qubit
outcomes according to their measurement probability.

3. Key Results and Contributions

Our key results are that 1) a quantum circuit simulation
approach based on knowledge compilation of probabilistic
program representations is correct for a benchmark suite
of quantum algorithms, and 2) such an approach offers
advantages in simulating near-term variational quantum al-
gorithms, relative to other simulation approaches based on
state vectors2, density matrices, and tensor networks [3]
(Fig. 1). The advantages are due to the more compact
representation, the circuit minimization and memoization
capabilites of our approach, and due to the storage costs
for conventional simulators based on matrix representations.
The improved simulation performance facilitates studying
variational algorithms and validating prototype quantum
computer results in the NISQ era of quantum computing.
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