ASPLOS’21 Submission #949— Confidential Draft — Do Not Distribute!!

Language-Parametric Compiler Validation with Application to LLVM
Extended Abstract

1. Motivation

Modern optimizing compilers such as LLVM [6] and GCC [3]
are huge and complex, and mature releases routinely have
uncaught bugs [15]. Beyond harm to software development,
the lack of formal correctness guarantees for the compilation
process seriously limits the guarantees other software sys-
tems can provide. For example, the seL.4 operating system
microkernel [5] had to use a custom compilation verification
solution in order to provide formal correctness guarantees for
the microkernel [14]. As another example, most iOS appli-
cations and all watchOS and tvOS applications are shipped
by developers to the Apple Store as LLVM bitcode [1, 4] and
compiled to machine code on Apple’s servers. This has raised
concerns among developers that the machine code may not be
identical to what they tested before shipping, exposing unex-
pected bugs [17]. Compilation verification can be valuable to
increase confidence in the correctness of the final native code.

In this work, we attack the problem of compilation verifi-
cation: providing a formal guarantee that a compilation of a
program is correct. We do that not only theoretically, as an in-
stance of program equivalence, but from a practical standpoint
as well: We aim for a solution suitable for production opti-
mizing compilers such as LLVM. Full static verification of the
compiler source code itself, e.g., as in CompCert [7], has only
been shown to work for compilers designed specially from
the ground up for formal proofs, and requires extensive proof
engineering by formal methods experts (see Section 6). We
pursue an alternative approach called Translation Validation,
better suited to production compilers.

Translation Validation (TV) [11] aims to prove correctness
of a single compilation run, by considering only a specific
pair of input and output programs. TV techniques are well
suited to practical compilation verification because they can
be retrofitted to production compilers and (in our approach)
require relatively little formal methods expertise from com-
piler developers, once the operational semantics of compiler
internal representations (IRs) are formally defined.

There are three essential components of a TV system:

1. A formal notion of program equivalence.

2. A verification condition (VC) generator that generates a
sufficient set of obligations to be discharged in order to
prove equivalence. Verification conditions relate program
points and variables in the input and output programs.

3. A proof system that accepts the verification conditions, gen-
erates a machine-checkable equivalence proof, and checks
the proof for correctness.

2. Limitations of the State of the Art

There is a rich literature of successful TV systems for com-
pilation verification, for example [10] for GCC and [16] for
LLVM, among others. The main limitation of these systems
is that each of them is custom-tailored for a particular se-
quence of transformations, and moreover, specialized for a
specific, common intermediate language for the input and out-
put programs. The fixed language makes it difficult to use the
approach for modern compilers, which typically use different
intermediate languages for different stages (e.g,. LLVM uses
at least three different languages). For example, Necula’s work
on GCC [10] is limited to the lowest-level IR form, Register
Transfer Language (RTL), and does not apply to the bulk of
the optimizations which are done on the higher-level GIMPLE
representation [2]. Moreover, none of these previous systems
would be able to verify a key phase like Instruction Selection
in LLVM, which converts between two different IRs. The best
effort has been to translate both input and output programs
to a third, common internal representation as a preliminary
step [14], which introduces two new unverified language trans-
lators in order to verify the original translator.

3. Key Insights

The key insight underlying our work is that two of the three TV
system components mentioned above can be generalized to be
transformation- and language-independent: the formal notion
of equivalence, and the proof system. The only component
that needs to depend on specific transformations is the VC
generator, and that is conceptually the simplest because it
requires little formal methods expertise, making our approach
suitable for real-world compiler teams which typically lack
such expertise. Together, these make our approach far more
practical than previous solutions.

More specifically, we design a program equivalence checker,
KEQ, that can be used unchanged for different transformation
passes and input/output language pairs. KEQ accepts opera-
tional semantics definitions of the input and output languages
as parameters, as well as the VC for a transformation sequence.
The operational semantics of each IR must be defined once,
and KEQ can then be reused across all the transformations
found in the compilation path. Moreover, the input and output
languages can be completely different, as long as programs
can be related using the VC.

In this work, we showcase the power of these properties
by using KEQ in a prototype TV system for the Instruction
Selection phase of LLVM, a sophisticated phase that translates

LLVM IR [8] to Machine IR [9] representing the x86-64 in-
struction set. Moreover, in our ongoing work (not part of the
current paper), we are applying KEQ unchanged to validate
the register allocation phase of LLVM, with a VC generator
that treats the allocator completely as a black box (i.e, has no
knowledge of the allocation algorithm), and we plan to apply
it to LLVM-to-LLVM transformations in future.

We provide a strong theoretical foundation for KEQ and
its correctness. First, we present a formalization for program
equivalence which we call cut-bisimulation (a variant of weak
bisimulation [13] widely used in the literature) that is weak
enough to enable proofs for realistic compiler transformations,
and yet expressive enough to subsume most of the equiva-
lence properties that have been used in existing TV systems.
Cut-bisimulation can express equivalence of programs in two
different languages, as long as a VC can relate program states
in the two languages. We then use cut-bisimulation to define
an equivalence checking algorithm that forms the theoretical
basis for KEQ.

Given those, only the VC generator needs to be designed
per transformation (or set of transformations). Such genera-
tors need to provide a candidate relation between input and
output program states that the proof system can verify to be
indeed a cut bisimulation relation. We add a small number of
compiler hints in the Instruction Selection phase of LLVM for
our prototype VC generator.

In short, this work presents the first TV system that is
reusable across the whole compilation path and requires the
minimum amount of customization per transformation and
(intermediate) language: a semantic definition of every lan-
guage found in the compilation path and one or more proof
generators that use transformation-specific information.

4. Main Artifacts

We present five artifacts, the first three of which are
transformation-independent.

1. The KEQ program equivalence checker is implemented as
a tool within the K Framework [12].

2. The LLVM IR semantics definition is implemented in K.

3. The x86 semantics definition is also implemented in K.

4. The (transformation-specific) verification condition gener-
ator for Instruction Selection is implemented as a Python
script and relies on a minimal hint generator added to the
LLVM compiler.

5. Finally, a rigorous formalization of cutbisimulation along
with an equivalence checking algorithm based on cut-
bisimulation that is the theoretical foundation behind KEQ.

We evaluate these artifacts on 2798 functions of the GCC
SPEC 2006 benchmark with supported features. We correctly
validate the translation of 97.6% of the supported functions in
GCC, i.e., 2730/ 2798 functions.

5. Key Results and Contributions

This paper presents a TV system design for compilation verifi-
cation in real-world optimizing compilers that requires mini-
mal customization for the various transformations and inter-
mediate languages of the compilation path.

The main contributions of this paper are:

e KEQ, a new tool for checking program equivalence that
accepts the operational semantics of the input and output
languages as parameters, and is independent of the trans-
formation used to generate the output. This is the first pro-
gram equivalence checking tool known to the authors that
is language-parametric instead of containing hard-coded
language semantics as is the norm in the literature.

e A rigorous formalization, namely cut-bisimulation, for
weak bisimulation variants that have been traditionally used
in different TV systems. We use cut-bisimulation as the ba-
sis of the KEQ equivalence checking algorithm, and provide
a correctness proof for that algorithm.

e A prototype of a Translation Validation system for the In-
struction Selection pass of the LLVM compiler infrastruc-
ture, able to automatically prove equivalence for translations
from LLVM IR when compiling to the x86-64 instruction
set. This is a mature, sophisticated translation phase of a
production compiler. Moreover this is a transformation that
uses different input and output languages, and as such has
not been previously addressed by the state of the art.

6. Why ASPLOS

This work aims to provide practical methodologies and tools
for enforcing correctness of, and increasing confidence in,
modern optimizing compilers. These goals are increasingly im-
portant to many in the ASPLOS community who are interested
in security, software reliability, and trust in today’s computing
systems. The work makes technical contributions to program-
ming languages (language semantics and parametric program
equivalence), compilers (practical TV system for compilation
verification), and formal methods (cut-bisimulation formal-
ization). This work brings modular validation of production
compilers such as LLVM within reach of today’s compiler
teams.

7. Citation for Most Influential Paper Award

The ASPLOS 2021 paper “Language-Parametric Compiler
Validation with Application to LLVM” presented the first
Translation Validation approach where all but a small part
is transformation-independent and parameterized in the source
and output languages, allowing it to be reused across most
phases of production compilers, including difficult-to-check
ones such as Instruction Selection in LLVM. This work brings
modular validation of production compilers within reach of
today’s compiler teams.

References

[1]

[2]

[3]
[4]
[5]

[6

=

(7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

Apple Corp. iOS App Distribution Guide. https://developer.
apple.com/library/etc/redirect/DTS/10SAppDistGuide,
2019. Accessed: February 2019.

Free Software Foundation. GNU Compiler Collection In-
ternals. S$https://gcc.gnu.org/onlinedocs/gccint/Passes.
html, 2019. Accessed: August 2020.

GCC. GNU Compiler Collection. https://gcc.gnu.org, 2020.
Accessed: August 21, 2020.

Jeremy Horwitz. Apple Watch apps instantly went 64-bit thanks to
obscure Bitcode option. VentureBeat, 2018.

Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick,
David Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt,
Rafal Kolanski, Michael Norrish, Thomas Sewell, Harvey Tuch, and
Simon Winwood. Sel4: Formal verification of an os kernel. In Pro-
ceedings of the ACM SIGOPS 22nd Symposium on Operating Systems
Principles, SOSP 09, page 207-220, New York, NY, USA, 2009.
Association for Computing Machinery.

Chris Lattner and Vikram Adve. LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation. In Proceedings of the
2004 International Symposium on Code Generation and Optimization
(CGO’04), Palo Alto, California, Mar 2004.

Xavier Leroy. Formal verification of a realistic compiler. Commun.
ACM, 52(7):107-115, July 2009.

LLVM. LLVM Language Reference Manual. http://1lvm.org/
docs/LangRef.html, 2020. Accessed: August 21, 2020.

LLVM. LLVM Target-independent Code Genera-
tor. http://11lvm.org/docs/CodeGenerator.html#
machine-code-representation, 2020. Accessed: August
21, 2020.

George C. Necula. Translation validation for an optimizing compiler. In
Proceedings of the ACM SIGPLAN 2000 Conference on Programming
Language Design and Implementation, PLDI 00, pages 83-94, New
York, NY, USA, 2000. ACM.

Amir Pnueli, Michael Siegel, and Eli Singerman. Translation vali-
dation. In Proceedings of the 4th International Conference on Tools
and Algorithms for Construction and Analysis of Systems, TACAS 98,
pages 151-166, London, UK, UK, 1998. Springer-Verlag.

Grigore Rosu and Traian Florin Serbanutd. An overview of the K
semantic framework. Journal of Logic and Algebraic Programming,
79(6):397-434, 2010.

Davide Sangiorgi. Introduction to Bisimulation and Coinduction. Cam-
bridge University Press, New York, NY, USA, 2011.

Thomas Arthur Leck Sewell, Magnus O. Myreen, and Gerwin Klein.
Translation validation for a verified os kernel. In Proceedings of the
34th ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI 13, pages 471482, New York, NY, USA,
2013. ACM.

Chengnian Sun, Vu Le, Qirun Zhang, and Zhendong Su. Toward
understanding compiler bugs in gcc and llvim. In Proceedings of the
25th International Symposium on Software Testing and Analysis, ISSTA
2016, pages 294-305, New York, NY, USA, 2016. ACM.
Jean-Baptiste Tristan, Paul Govereau, and Greg Morrisett. Evaluating
value-graph translation validation for llvm. In Proceedings of the 32Nd
ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI "11, pages 295-305, New York, NY, USA, 2011.
ACM

DaVi(i Wheeler. To bitcode, or not to bitcode? iovation, 2015.

https://developer.apple.com/library/etc/redirect/DTS/iOSAppDistGuide
https://developer.apple.com/library/etc/redirect/DTS/iOSAppDistGuide
%https://gcc.gnu.org/onlinedocs/gccint/Passes.html
%https://gcc.gnu.org/onlinedocs/gccint/Passes.html
https://gcc.gnu.org
http://llvm.org/docs/LangRef.html
http://llvm.org/docs/LangRef.html
http://llvm.org/docs/CodeGenerator.html#machine-code-representation
http://llvm.org/docs/CodeGenerator.html#machine-code-representation

	Motivation
	Limitations of the State of the Art
	Key Insights
	Main Artifacts
	Key Results and Contributions
	Why ASPLOS
	Citation for Most Influential Paper Award

