
Exploiting Gustavson’s Algorithm to Accelerate Sparse Matrix Multiplication

Extended Abstract

Guowei Zhang† Nithya Attaluri† Joel Emer†∗ Daniel Sanchez†

†MIT ∗NVIDIA

{zhanggw, nsattaluri, emer, sanchez}@csail.mit.edu

1. Motivation

Scientific and machine learning applications are increasingly

computing on sparse data, i.e., data where a large fraction of

values are zeros. In this work, we focus on accelerating sparse

matrix-sparse matrix multiplication (SPMSPM), a key kernel

that lies at the heart of many sparse algorithms, like sparse deep

neural networks [5,10], sparse linear and tensor algebra [8,13],

graph analytics [3, 7], and scientific simulations [1].

SPMSPM has two key characteristics that make it challeng-

ing to accelerate. First, SPMSPM is bottlenecked by memory

traffic and data movement: it requires far fewer arithmetic op-

erations per input element than dense matrix multiplication,

and its inputs and outputs typically use a compressed repre-

sentation that omits zeros but is more complicated to traverse,

requiring irregular and indirect accesses. Thus, to be effec-

tive, accelerators must minimize data movement, rather than

compute operations. Second, SPMSPM has a rich algorithmic

diversity: it admits a wide range of dataflows (i.e., computa-

tion schedules) with different tradeoffs, and some dataflows

have asymptotically worse performance on particular inputs.

Thus, accelerators must achieve efficiency though specializa-

tion while avoiding the inefficiencies of using a suboptimal

SPMSPM dataflow.

2. Limitations of the State of the Art

Prior work has proposed SPMSPM accelerators that greatly

improve performance over CPUs and GPUs. And yet, these

accelerators have focused on one of two SPMSPM dataflows,

inner-product [6, 12] or outer-product [9, 15], which suffer

from poor input or output reuse, leading to high traffic that

limits speedups. Gustavson’s algorithm [4] does not suffer

from these problems but features irregular memory access

patterns that are a poor match to prior accelerators.

In SPMSPM, inputs and output matrices are encoded in a

compressed sparse representation, where each row or column

is encoded as a fiber, a list of coordinates and nonzero values

sorted by coordinate. Compressed sparse data structures avoid

encoding frequent zero values, but can only efficiently be tra-

versed in a particular order, and require indirect accesses to

locate each fiber. SPMSPM requires accessing variable-sized

fibers and intersecting or combining them. These operations

are inefficient on CPUs and GPUs.

Accelerators like UCNN [6] and SIGMA [12] implement

inner-product SPMSPM. Inner-product produces the output

matrix one element at a time, by intersecting rows and columns

of the input matrices. Inner-product maximizes output reuse

but sacrifices reuse of the input matrices, and is inefficient with

very sparse matrices, as it is dominated by the cost of intersec-

tions. Intersections are inefficient because all of the elements

of the rows and columns must be traversed, but few row and

column elements have a matching coordinate and contribute

to the output. Thus, most of the intersection is ineffectual.

By contrast, accelerators like OuterSPACE [9] and

SpArch [15] implement outer-product SPMSPM. Outer-

product computes the output one partial matrix at a time, by

traversing each row and column of the input matrices once

and producing a partial output matrix that includes all of their

contributions. Outer-product achieves good reuse of the input

matrices and avoids inner-product’s ineffectual intersections,

at the cost of producing many large partial output matrices

that must be combined (merged) to produce the final output.

Outer-product accelerators are thus burdened with significant

partial output matrix traffic and the complexity associated with

combining those partial output matrices.

Accelerators include multiple optimizations over these ba-

sic dataflows to mitigate their inefficiencies, such as tiling and

preprocessing the input matrices. Nonetheless, they are ham-

pered by the fundamental drawbacks of inner- or outer-product,

and incur order-of-magnitude traffic inefficiencies. For exam-

ple, Fig. 3 in the paper shows that these accelerators incur

14–1045× more traffic than needed on two representative ma-

trices. Since SPMSPM is memory-bound on accelerators, these

traffic overheads translate to performance degradations.

3. Key Insights

The key insight in this paper is to leverage Gustavson’s al-

gorithm [4], an alternative SPMSPM dataflow passed over by

previous hardware designs, to build a far more efficient and

versatile accelerator. Gustavson computes the output matrix

one row of a time, by traversing rows of A and linearly combin-

ing (i.e., scaling and reducing) the rows of B for which the row

of A has nonzero values. Gustavson is more efficient because

it avoids the extremes of inner- and outer-product dataflows.

While Gustavson does not get as much reuse of a single value

as inner- or outer-product dataflows, it gets reuse of modestly

sized rows. Unlike outer-product, Gustavson requires combin-

ing partial output rows rather than partial output matrices, a

simpler operation on much smaller intermediates that more

easily fit on-chip; and unlike inner-product, Gustavson avoids



ineffectual intersections and poor input reuse.

Leveraging Gustavson in SPMSPM acceleration requires

new architectural support to adapt to its characteristics, namely

its irregular reuse. Gustavson also has qualitatively different

benefits in hardware than in software: while nearly every high-

performance CPU and GPU SPMSPM implementation is a

variant of Gustavson’s, software versions leverage Gustavson

mainly to reduce the cost of merging fibers, which is their

dominant overhead. By contrast, Gustavson’s key benefit in

accelerators is reducing memory traffic.

Specifically, we present GAMMA, the Gustavson-Algorithm

Matrix-Multiplication Accelerator. GAMMA combines three

key features to exploit Gustavson’s algorithm:

1. GAMMA uses simple processing elements (PEs) that lin-

early combine sparse input rows to produce each output row.

PEs implement high-radix mergers that combine many input

rows (e.g., 64 in our design) in a single pass, reducing work

and memory accesses. Instead of expensive high-throughput

mergers as in prior work [15], GAMMA uses simple one-out-

put-per-cycle mergers that take 27× less area. GAMMA then

relies on Gustavson’s row-level parallelism to achieve high

throughput efficiently, using tens of PEs to perform many

combinations in parallel. Thus, GAMMA concurrently pro-

cesses thousands of compressed sparse fibers, variable-sized

rows from inputs or partial outputs.

2. GAMMA uses a novel storage structure, FIBERCACHE, to

efficiently buffer the thousands of fibers required by the

PEs. FIBERCACHE is organized as a cache to capture Gus-

tavson’s irregular reuse patterns. However, FIBERCACHE is

managed explicitly [11], like a large collection of buffers, to

proactively fetch missing fibers ahead of time and avoid PE

stalls. This saves megabytes of dedicated on-chip buffers.

3. GAMMA dynamically schedules work among PEs to ensure

high utilization and minimize memory traffic despite the

irregular nature of Gustavson’s algorithm.

GAMMA outperforms prior accelerators on a wide range of

inputs. However, GAMMA still incurs more traffic than needed

on some inputs. To address this issue, we propose a prepro-

cessing technique that combines row reordering and tiling of

some rows of one matrix input. Preprocessing further improves

GAMMA’s performance and avoids pathologies across the full

range of inputs.

4. Main Artifacts

• We present GAMMA, a practical implementation of an ef-

ficient accelerator that implements Gustavson’s algorithm

for SPMSPM. This includes the design of PEs that leverage

a simple high-radix merger to efficiently perform the key

computation needed by Gustavson’s algorithm and the de-

sign of a novel cache-like structure that performs efficient

data orchestration of sparse fibers.

• We present data preprocessing techniques that reorder the

rows of the matrices and also selectively tile rows of the

matrices to improve the efficiency of GAMMA.

• We synthesize GAMMA to project its hardware costs and

compare them to prior accelerators.

• We evaluate GAMMA’s performance and memory efficiency

with detailed simulation on a wide range of sparse matrices.

5. Key Results and Contributions

• We show that Gustavson’s dataflow is often more efficient

than the other two SPMSPM dataflows. But it is challenging

to implement in accelerators due to its use of less regular

access patterns than previously implemented dataflows.

• We build GAMMA, a novel SPMSPM accelerator to imple-

ment a dataflow inspired by Gustavson’s algorithm. The ac-

celerator combines specialized PEs, that efficiently compute

linear combinations of rows, a novel cache-like structure

to capture Gustavson’s irregular reuse, and dynamic task

scheduling to achieve high utilization despite irregularity.

• We propose preprocessing techniques that boost GAMMA’s

effectiveness by generating a reference pattern that reduces

memory traffic.

• We evaluate GAMMA under a broad range of matrices, show-

ing large performance gains and memory traffic reductions

over prior systems. Compared to the state-of-the-art accel-

erator, SpArch, GAMMA improves performance by 2.1×
with a smaller area budget. GAMMA reduces total DRAM

traffic by 2.2× on average and by up to 13×, reduces non-

compulsory DRAM traffic by 13× on average, and achieves

nearly full DRAM bandwidth utilization. GAMMA delivers

larger benefits over OuterSPACE and a state-of-the-art soft-

ware SPMSPM. Moreover, GAMMA is effective on a much

broader range of sparse matrices.

6. Why ASPLOS

Accelerators are a common topic for ASPLOS, and this paper

is particularly well suited because it melds insights and tech-

niques from software and hardware in different ways. First, we

focus on exploiting a dataflow that has been underexplored in

hardware despite being widely used in software implementa-

tions. Our work shows that, with the right architectural support,

Gustavson’s algorithmic advantages confer significant benefits

in hardware, although these benefits are different from soft-

ware. Our work aligns software and hardware implementations

around a common algorithm. Second, this work accelerates

SPMSPM, which is widely used in machine learning, graph an-

alytics, and linear algebra. By providing hardware support for a

more efficient and versatile dataflow, GAMMA can simplify the

development of programming stacks in these domains, such as

compilers and optimizations for sparse data [2, 8, 14]. Finally,

this work illustrates the effectiveness of hardware-software

co-design by exploring specific approaches to preprocessing

of matrices that both reorder rows and selectively tile some

rows to improve efficiency.

2



References

[1] A Canning, G Galli, F Mauri, A De Vita, and R Car. O (n) tight-binding
molecular dynamics on massively parallel computers: an orbital de-
composition approach. Computer Physics Communications, 94(2-3),
1996.

[2] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie
Yan, Haichen Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis
Ceze, et al. {TVM}: An automated end-to-end optimizing compiler
for deep learning. In Proceedings of the 13th USENIX symposium on
Operating Systems Design and Implementation (OSDI-13), 2018.

[3] John R Gilbert, Steve Reinhardt, and Viral B Shah. High-performance
graph algorithms from parallel sparse matrices. In International Work-
shop on Applied Parallel Computing, 2006.

[4] Fred G Gustavson. Two fast algorithms for sparse matrices: Multiplica-
tion and permuted transposition. ACM Transactions on Mathematical
Software (TOMS), 4(3), 1978.

[5] Song Han, Huizi Mao, and William J Dally. Deep compression: Com-
pressing deep neural networks with pruning, trained quantization and
huffman coding. arXiv preprint arXiv:1510.00149.

[6] Kartik Hegde, Jiyong Yu, Rohit Agrawal, Mengjia Yan, Michael Pel-
lauer, and Christopher Fletcher. Ucnn: Exploiting computational reuse
in deep neural networks via weight repetition. In Proceedings of
the 45th annual International Symposium on Computer Architecture
(ISCA-45), 2018.

[7] Jeremy Kepner, David Bader, Aydın Buluç, John Gilbert, Timothy Matt-
son, and Henning Meyerhenke. Graphs, matrices, and the GraphBLAS:
Seven good reasons. Procedia Computer Science, 51, 2015.

[8] Fredrik Kjolstad, Shoaib Kamil, Stephen Chou, David Lugato, and
Saman Amarasinghe. The tensor algebra compiler. In Proceedings
of the ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA), 2018.

[9] Subhankar Pal, Jonathan Beaumont, Dong-Hyeon Park, Aporva Amar-
nath, Siying Feng, Chaitali Chakrabarti, Hun-Seok Kim, David Blaauw,
Trevor Mudge, and Ronald Dreslinski. Outerspace: An outer product

based sparse matrix multiplication accelerator. In Proceedings of the
24th IEEE international symposium on High Performance Computer
Architecture (HPCA-24), 2018.

[10] Angshuman Parashar, Minsoo Rhu, Anurag Mukkara, Antonio
Puglielli, Rangharajan Venkatesan, Brucek Khailany, Joel Emer,
Stephen W Keckler, and William J Dally. Scnn: An accelerator for
compressed-sparse convolutional neural networks. In Proceedings of
the 44th annual International Symposium on Computer Architecture
(ISCA-44), 2017.

[11] Michael Pellauer, Yakun Sophia Shao, Jason Clemons, Neal Crago,
Kartik Hegde, Rangharajan Venkatesan, Stephen W Keckler, Christo-
pher W Fletcher, and Joel Emer. Buffets: An efficient and composable
storage idiom for explicit decoupled data orchestration. In Proceed-
ings of the 24th international conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS-XXIV),
2019.

[12] Eric Qin, Ananda Samajdar, Hyoukjun Kwon, Vineet Nadella, Su-
darshan Srinivasan, Dipankar Das, Bharat Kaul, and Tushar Krishna.
Sigma: A sparse and irregular gemm accelerator with flexible intercon-
nects for dnn training. In Proceedings of the 26th IEEE international
symposium on High Performance Computer Architecture (HPCA-26),
2020.

[13] Ichitaro Yamazaki and Xiaoye S Li. On techniques to improve robust-
ness and scalability of a parallel hybrid linear solver. In International
Conference on High Performance Computing for Computational Sci-
ence, 2010.

[14] Yunming Zhang, Mengjiao Yang, Riyadh Baghdadi, Shoaib Kamil,
Julian Shun, and Saman Amarasinghe. Graphit: A high-performance
graph dsl. In Proceedings of the ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications (OOP-
SLA), 2018.

[15] Zhekai Zhang, Hanrui Wang, Song Han, and William J Dally. Sparch:
Efficient architecture for sparse matrix multiplication. In Proceed-
ings of the 26th IEEE international symposium on High Performance
Computer Architecture (HPCA-26), 2020.

3


	Motivation
	Limitations of the State of the Art
	Key Insights
	Main Artifacts
	Key Results and Contributions
	Why ASPLOS

