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1. Motivation

Data prefetching is an important memory latency-hiding tech-
nique that has seen significant advances over decades of re-
search. Nevertheless, considerable headroom still exists, par-
ticularly for irregular workloads. For example, on Google’s
search and ads workloads, we find that an idealized version
of the current state-of-the-art [3] sees coverage of just 13.8%
and 26.2%, respectively.

Since prefetching is a prediction problem, it is natural to
wonder if powerful machine learning techniques, such as neu-
ral networks, can help. Unfortunately, there are two challenges
in applying machine learning to data prefetching. First, there
is a labeling problem: 1t is difficult to provide ground truth
labels that can be used to train a neural model for data prefetch-
ing. Unlike a branch predictor, which can be trained based on
the ground truth answer from the program’s execution, a data
prefetcher can potentially target any of the many addresses
that the program will access in the near future. Second, there
is a class explosion problem: the output space—i.e., the set of
possible addresses to predict—is orders of magnitude larger
than those used for traditional machine learning tasks in vision
and natural language processing [4, 7]. For example, for a
64-bit address space, a neural data prefetcher needs to predict
from among tens of millions of unique address values, which
is two orders of magnitude larger than what state-of-the-art
language models need to handle.

2. Limitations of the State of the Art

Previous attempts at using neural networks for data prefetch-
ing [2, 6] have three limitations.

First, to avoid the class explosion problem, they restrict
the problem so that their prefetchers need only learn a few
deltas. In particular, these solutions spatially partition the
address space and only prefetch addresses that lie in the same
partition as the trigger address. While this strategy works well
for workloads with spatial locality, they are unable to capture
irregular memory accesses that can span the entire address
space.

Second, they avoid the labeling problem by always attempt-
ing to prefetch the next address in the global access stream,
which can lead to poor predictability and poor timeliness.

Third, these neural prefetchers are expensive in both storage
and computation. For example, Hashemi et al.’s LSTM-based
prefetcher [2] consumes 100MB to several GBs of metadata,
which is too large to be stored on chip.

3. Key Insights

This paper presents Voyager, a novel neural network for data
prefetching. Unlike previous neural models for prefetching,
which were limited to learning a relatively small number of
delta correlations, our model can also learn address correla-
tions, which are significantly more powerful.

Our solution is based on two insights.

First, we solve the class explosion problem by decomposing
the learning problem into two sub-problems, namely, a page
prediction and an offset prediction. While it may seem obvious
to split physical addresses into pages and offsets, the challenge
is to not treat the two as independent learning problems, be-
cause the page provides important context for predicting the
correct offset. We solve this challenge by introducing a novel
attention-based embedding layer that allows pages to provide
context for the learning of offsets.

Second, to solve the labeling problem, our model learns
to identify, for each trigger address, the subsequent memory
address that is most predictable. We find that for most SPEC
workloads, our model automatically picks the next address by
the same PC, but for a few benchmarks, it identifies labels that
are not consecutive in either the global access stream or the
PC-localized stream.

4. Main Artifacts

This paper presents two main artifacts.

e We present Voyager, a neural model that can perform ad-
dress correlation as well as delta correlation.

e We evaluate Voyager in a hardware setting by training Voy-
ager online and evaluating its impact through detailed mi-
croarchitectural simulation.

5. Key Results and Contributions

We advance the state-of-the-art in irregular data prefetching
by developing a neural network model that can perform both
delta and temporal prefetching, and we demonstrate for the
first time that LSTM-based neural prefetchers can significantly
outperform existing rule-based prefetchers.

Using a set of irregular benchmarks, we show that Voy-
ager achieves coverage of 79.6%, compared with 57.9% for
ISB [3], a state-of-the-art rule-based temporal prefetcher. This
coverage translates to a a 41.6% performance improvement for
Voyager over a baseline with no prefetcher, compared to just
28.2% for ISB. More significantly, on Google’s search and
ads, two applications that have proven remarkably resistant to



hardware prefetchers, our model achieves 37.8% and 57.5%
coverage, respectively, where an idealized version of ISB sees
coverage of just 13.8% and 26.2%, respectively.

We also show that Voyager outperforms previous neural
prefetchers [2], while significantly reducing training cost, pre-
diction latency, and storage overhead. For example, Voy-
ager achieves 79.6% coverage (vs. 56.8% coverage for Delta-
LSTM); it reduces training and prediction costs by 15-20x;
and it reduces model size by 110-200x. In fact, we find that
Voyager’s model size is smaller than those of state-of-the-art
temporal prefetchers [8, 1, 9]. Nevertheless, neural prefetch-
ers are currently computationally impractical for hardware
deployment, so our paper outlines some potential paths from
Voyager to a practical neural prefetcher.
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Figure 1: Voyager wins on accuracy, speedup, and storage
efficiency. Here storage efficiency is log-scaled and defined
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as 1-+logjo(storage)

While Voyager is not practical from a computational per-
spective, Figure 1 illustrates the advancements that Voy-
ager makes in three other dimensions by comparing Voyager
against the previous best rule-based prefetcher (ISB [3]), and
against the previous best neural prefetcher (delta-LSTM [5]).

6. Why ASPLOS

Prefetching is a common tool that is employed at many levels
of the system stack to bring in various types of data. Prefetch-
ing can be performed by programmers, by compilers, by the
OS, and by the hardware, and it can bring in data, instructions,
TLB entries, and metadata. Because the advancement of this
paper is an algorithmic one, it can potentially translate to other
ares of the system stack and other uses of prefetching than
data prefetching.

7. Citation for Most Influential Paper Award

This paper had a significant impact on the design of modern
irregular data prefetchers and on the use of machine learning
for hardware prediction. For irregular data prefetching, the
paper showed the potential of employing powerful learning
algorithms, which spurred future work in both neural and
non-neural prefetchers. For the use of ML in systems, the
paper highlighted the need to go beyond off-the-shelf neural
models and to develop novel model architectures for hardware
predictors.
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