


(a) ResNet-34

(b) ResNext-29-2x64d

(c) DenseNet-161

Figure 1: End-to-end performance for several networks on different hardware devices

architectures, from standard 3×3 convolutions in ResNet-34
to grouped convolutions in ResNeXt and a heavy reliance on
1×1 convolutions in DenseNet. We verify the safety of our
compiler by training the output networks on two well known
datasets: CIFAR-10 and ImageNet.

The networks are implemented with each operation written
as a TVM Tensor Expression [2], which is an einsum-style
syntax for expressing tensor computations. This is lowered to
TVM IR, where our transformations can be employed. This
allows for a fair comparison of our approach. Trained models
and code are publicly available.

5. Key Results and Contributions

Our contributions are as follows:
1. We reformulate popular Neural Architecture Search tech-

niques as program transformations. The NAS community
describes different convolution types in ad hoc manner, ig-
noring structural equivalence while program transformation
systems cannot reason about them.

2. We use Fisher Potential to provide transformation safety
without the need to train. This means we can consider
NAS search as program transformation exploration with
standard compiler legality checks; without any training in
the search loop.

3. We unify the transformation and architecture search spaces,

discovering new types of convolution. We provide thorough
analysis of three examples of new types of convolutional
operators available in our framework that give significant
performance improvement across networks and hardware.

4. We evaluate 3 networks using these operations, ResNet,
ResNext and DenseNet, on 4 platforms and demonstrate,
in most cases, more than 3× inference speedup over a
TVM baseline. In fact, in certain cases we achieve a 10×
improvement (see Figure 1). This is achieved without the
extremely long search times of conventional NAS.

5. We are able to explore the accuracy/space co-design space
of networks and find new designs including a new Pareto
optimal network.

6. Why ASPLOS

Neural network efficiency is of great interest to the ASPLOS
community. This paper directly connects programming lan-
guages and architecture by automatically determining how
to transform a program to improve performance on a range
of hardware. It also brings together two distinct communi-
ties — neural architecture search and compiler optimization —
around the common goal of improved hardware performance.
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