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1. Motivation

Improving the performance of deep neural networks (DNNs) is
important to both the compiler and neural architecture search
(NAS) communities. Compilers optimize neural networks by
applying program transformations, with the aim of exploiting
hardware parallelism and memory hierarchy. However, legal-
ity concerns mean they fail to exploit the natural robustness of
neural networks. In contrast, NAS techniques mutate networks
by swapping out operations for different alternatives, such as
the grouping or bottlecking of convolutions. In this way, NAS
techniques exploit the natural resilience of DNNs to noise.

In this work, we reframe the process of a NAS agent swap-
ping one type of convolution for another as a form of program
transformation whose legality depends on a notion of repre-
sentational capacity. This allows the transformations to be
combined with existing ones into a unified optimization frame-
work. This unification allows us to express existing NAS
operations as combinations of simpler transformations, to dis-
cover new ones, and to quickly generate fast implementations
for them. We prototyped the combined framework in TVM
and were able to find optimizations that reduce inference time
by over 3x across a wide variety of workloads.

2. Limitations of the State of the Art

We have two distinct communities with the same goal but are
siloed: the NAS community, and the compiler community.
NAS researchers assume the compiler is a black box bundled
with the hardware, while compiler writers assume that the net-
work architecture is set in stone. NAS researchers can discover
good networks but are limited to a set of pre-implemented op-
erations; compiler writers can efficiently exploit hardware
structure but miss larger scale optimization opportunities.

NAS designs are not guaranteed to be correct and have to
be separately evaluated through either a full retraining process
or on a smaller proxy task. This training process severely
limits the search space and can render large scale searches
intractable. For example, the seminal work of [7] relied on
a restricted design-space, but needed 48,000 GPU-hours to
converge on its optimal network. The current state-of-the art
approach still requires 216 GPU-hours [5].

Compiler approaches avoid this excessive search time but
fail to exploit domain specific opportunities. They are inher-
ently conservative and ignore the inherent ability of neural
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networks to weather deformation, reshaping and transforma-
tion while incurring minimal damage to their ability to learn.

Though the toolchains are exceptionally feature-rich, there
is some evidence of highly-engineered implementations for
specific workloads, at the cost of general support for newer
optimizations [1]. All current approaches, however, are funda-
mentally limited by their inability to exploit NAS transforma-
tions.

What we want is the best of both worlds. We wish to
combine neural architecture and compiler optimization in a
unified framework. In this paper, we recast neural architecture
search as program transformation exploration. By including
transformations such as grouping and bottlenecking into the
compiler optimization search space, we not only leverage the
extensive history of program transformation research, but also
discover new forms of neural architecture reduction that would
not have been available to us otherwise.

3. Key Insights

Program transformations are necessarily restricted as they
must be safe. Our solution is to unlock the space of neural
transformations by introducing a new safety metric based
on Fisher Potential. It is a compile-time, cheap-to-compute
metric that is able to reject transformations that would incur
accuracy losses, eliminating the need to train while searching.

We, therefore, judge a transformation to be legal, not by
data dependence preservation, but by the preservation of rep-
resentational capacity. This unification allows the exploration
of a space that leads to new operators with efficient imple-
mentations. It also shows that neural architecture options
that previously required the engineering efforts of experts to
develop, such as spatial bottlenecking, can be expressed as
compositions of more fundamental transformations and dis-
covered automatically.

4. Main Artefacts

We have expressed our new transformations as polyhedral
transformations and implemented the resulting operators in
TVM [2]. We selected TVM as its API allows composition of
transformation sequences, and is a well-accepted state-of-the-
art optimizing compiler for convolutional neural networks.
We evaluate our methodology on three popular networks:
ResNet-34 [3], ResNeXt-29 [6], and DenseNet-161 [4]. These
networks were chosen to represent a range of convolutional
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Figure 1: End-to-end performance for several networks on different hardware devices

architectures, from standard 3 x 3 convolutions in ResNet-34
to grouped convolutions in ResNeXt and a heavy reliance on
1 x 1 convolutions in DenseNet. We verify the safety of our
compiler by training the output networks on two well known
datasets: CIFAR-10 and ImageNet.

The networks are implemented with each operation written
as a TVM Tensor Expression [2], which is an einsum-style
syntax for expressing tensor computations. This is lowered to
TVM IR, where our transformations can be employed. This
allows for a fair comparison of our approach. Trained models
and code are publicly available.

5. Key Results and Contributions

Our contributions are as follows:

1. We reformulate popular Neural Architecture Search tech-
niques as program transformations. The NAS community
describes different convolution types in ad hoc manner, ig-
noring structural equivalence while program transformation
systems cannot reason about them.

We use Fisher Potential to provide transformation safety
without the need to train. This means we can consider
NAS search as program transformation exploration with
standard compiler legality checks; without any training in
the search loop.

We unify the transformation and architecture search spaces,

discovering new types of convolution. We provide thorough
analysis of three examples of new types of convolutional
operators available in our framework that give significant
performance improvement across networks and hardware.

. We evaluate 3 networks using these operations, ResNet,
ResNext and DenseNet, on 4 platforms and demonstrate,
in most cases, more than 3x inference speedup over a
TVM baseline. In fact, in certain cases we achieve a 10 x
improvement (see Figure 1). This is achieved without the
extremely long search times of conventional NAS.

. We are able to explore the accuracy/space co-design space
of networks and find new designs including a new Pareto
optimal network.

6. Why ASPLOS

Neural network efficiency is of great interest to the ASPLOS
community. This paper directly connects programming lan-
guages and architecture by automatically determining how
to transform a program to improve performance on a range
of hardware. It also brings together two distinct communi-
ties — neural architecture search and compiler optimization —
around the common goal of improved hardware performance.
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