SherLock: Unsupervised Synchronization-Operation Inference
Extended Abstract

Guangpu Li', Dongjie Chen?, Shan Lu', Madanlal Musuvathi®, Suman Nath?

University of Chicago,’Nanjing University, *Microsoft Research

1. Motivation

Tools for detecting [6, 11,13, 14,18,24,26,27,29,32,35] and
fixing [15-17, 19, 25] concurrency bugs, understanding and
tuning performance [2, 5,9, 10, 21], and record-and-replay
concurrent programs [28, 31] require understanding the syn-
chronizations programs use. Typically, these tools rely on
manual specifications of these synchronizations. Unfortu-
nately, correctly identifying all synchronizations in modern
software is challenging. Unlike textbook C programs, where a
few pthread APIs perform all synchronization, modern soft-
ware uses many different forms of concurrent execution such
as traditional multi-threading, data parallel processing, event-
based asynchronous computing, and others, and each form is
coordinated by a varied set of synchronizations: C# standard
threading library alone offers 5 lock and 9 signal-wait classes,
with each containing many synchronization APIs and sub-
classes [3]. Making things worse, programs can create their
own, e.g., using shared variables, or use esoteric operating
system facilities or even remote-server based synchronization.
Incorrectly or incompletely identifying synchronizations can
severely reduce the effectiveness of concurrency bug detection
and performance analysis tools.

In this paper, we cast the synchronization inference problem
as a dynamic unsupervised probabilistic inference problem.
The basic idea is to dynamically monitor the operations during
representative executions (say, during testing) for signals indi-
cating synchronization behaviors. While each signal could be
noisy, the goal is to cumulatively combine these signals over
multiple executions to identify synchronizations. Being unsu-
pervised has the advantage that one needs no user-provided
annotations. This is essential for the general applicability of
this technique.

2. Limitations of the State of the Art

Most work on analyzing concurrent programs relies on manu-
ally identifying synchronizations, which is tedious and error
prone. This can lead to insurmountable porting effort for large
modern software systems [20, 22].

Previous research has worked on automatically identifying
custom synchronization but focused on specific program struc-
tures, like spin loop [30], shared-variable predicated control
dependency [7,33], and queues [34]. They typically require
complicated static program analysis and only cover specific
type of synchronization.

Some recent work automatically infers the existence of

! 1
Threadl@ }
I

]
I
Thresd? : @ Release
(a) A run without delay Window
I i Acquire
Thread1+®_>®_) peauire

1
Thread2 !

(b) When delay does not affect b

I — !
Thread1>(g )—{ delay | r ——+—>
Thread2 @

(c) When delay also affects b

Figure 1: Identify synchronization in acquire/release windows

happens-before relationship between two tasks, either by ob-
serving consistent ordering between them [9] or by observing
causal effects of delays around them [20]. Their goal is not to
infer the exact synchronization used to enforce the happens-
before relationship. Our work is thus orthogonal and can be
used to improve the effectiveness of these tools.

This work is inspired by prior work on probabilistic infer-
ence for security specifications [8,23], which identifies source,
sink, and sanitizers for security-vulnerability detection. In con-
trast to our work, these works use a semi-supervised approach
that requires manual annotations to bootstrap their analysis.
Also, they analyze the programs statically, while a key hypoth-
esis of our work is that dynamic program behavior provides
us a variety of signals to identify synchronization whose pre-
cision cannot be matched by those available statically.

3. Key Insights

Our unsupervised inference leverages three key insights.

Insight 1. Fundamentally, synchronizations order events
that would otherwise result in bugs, with acquire synchro-
nizations forcing a thread to wait (e.g., lock) and release syn-
chronizations waking up a thread from its wait (e.g., unlock).
For instance, a data race occurs when two threads concurrently
access the same variable with at least one of them being a write,
with no synchronization in between. Therefore, we hypothe-
size that most (if not all) such conflicting accesses in mature
programs are properly synchronized. Thus, if one considers a



Variable reads cannot release
Variable writes cannot acquire

Mostly, a pair of conflicting accesses are synchronized
Mostly, an acquire op’s duration varies much at run time
Mostly, a synchronization is not invoked frequently

Most operations are for computation, not synchronization
Mostly, if writing v helps release, reading v helps acquire

Table 1: Properties and hypotheses used by SherLock. (Gray-
background hypotheses apply to dynamic behavior.)

dynamic execution shown in Figure 1.a with two potentially
conflicting operations a and b, it is highly likely that one of the
operations in the releasing window that follows a is a release
synchronization and one of the operations in the acquiring
window that precedes b is an acquiring synchronization.

Insight 2. While a single execution is insufficient to pre-
cisely identify which of the operations in the releasing (acquir-
ing) window offers a release (acquire) synchronization, we
can do so by observing multiple executions and considering
other natures of synchronization. Specifically, we design a set
of properties and hypotheses (Table 1) that reflect fundamental
assumptions of synchronization and their behavior.

Insight 3. Effective inference depends on conflicting oper-
ations, such as the ones in Figure 1, being temporally close.
Otherwise, large acquire/release windows will produce too
many synchronization candidates. Rather than relying on luck,
we can actively perturb the execution at strategic locations to
facilitate software behavior that is useful for inference and
allow us to effectively identify synchronizations in just a few
runs. As shown in Figure 1, imagine that prior observations
indicate that r is a likely release synchronization. We can
then inject a delay right before r. Next, if we observe that the
execution of b does not get delayed together with r (Figure
1.b), we will obtain a much refined release window, between
a and the delay, which squeezes out many incorrect release
candidates, including r; on the other hand, if we observe that
the execution of b also gets delayed (Figure 1.c), we will get a
smaller acquire/release window, from 7 to b including r.

4. Main Artifacts

Guided by these key insights, we have designed SherLock.
Given a program binary and test inputs, SherLock dynami-
cally monitors the program on these tests. SherLock performs
unsupervised inference on these observations using three com-
ponents —an observer, a solver, and a perturber.

The Observer instruments the program binary to collect
observations from every run and generates constraints on the
likelihood a certain operation is an acquire or release using
the hypotheses in Table 1. Some of the constraints are hard
and cannot be violated (such as a read cannot be a release
synchronization) while others are soft and thus can be violated,
though we would like to minimize such violations.

The Solver encodes these constraints into a set of linear pro-
gramming problem [8] and uses a linear solver [1] to identify
candidate synchronizations.

The Perturber injects delays at strategic locations based on
the Solver outputs to help the Observer gets more interesting
observations and to help the Solver refines its results over runs.

5. Key Results and Contributions

We applied SherLock on 8 C# open-source applications. In
total, by running each test input 3 times, SherLock auto-
matically inferred 122 unique true synchronizations with
few false positives. These include 1) standard synchroniza-
tion primitives, such as monitors (Monitor.Enter/Exit),
fork-join (Task.Start/wait), and asynchronous tasks
(DataflowBlock.Post/Receive); (2) variable-based syn-
chronizations such as spin loops and flag variables; and, (3)
application-specific methods that enforce happens-before re-
lations by relying on underlying frameworks and language
semantics (e.g. order between last-reference-removing instruc-
tion and the object dispose). A version of FastTrack [11, 12]
that we built for C# applications detects 7x more true data
races and 8 x fewer false data races by using these inferred
synchronization information than the default.

This paper makes these contributions: (1) Identifying a set
of properties and hypotheses reflecting fundamental assump-
tions about and usage of synchronization, that work together
to enable effective synchronization inference. (2) A feedback-
based delay injection scheme to actively expose run-time be-
haviors that help synchronization inference. (3) An artifact
SherLock that uses unsupervised inference to automatically
identify synchronizations with high coverage and accuracy.

6. Why ASPLOS

Synchronizations are critical to the correctness and perfor-
mance of concurrent software. Unsupervised inference of
these synchronizations will lead to more effective data-race
detectors, as shown in this paper. We believe the techniques
presented in this paper will power future bug-finding and
performance-profiling tools, a topic that spans architecture,
programming languages, and operating systems.

We strongly believe that future language runtimes, with
appropriate hardware support, will infer nontrivial properties
about programs and use them to improve program performance
and correctness. We believe such inference has to be unsuper-
vised to require no user annotations and dynamic to effectively
use runtime program behavior. Looking back, one can con-
sider branch predictors as unsupervised dynamic inference en-
gines that are extremely effective. Inferring synchronizations
is but a first step towards the vision above. Many problems
left open in this paper, such as reducing the inference over-
head (say using appropriate architectural support [4]),would
be interesting for the ASPLOS community.



References

(1]
[2]

[3]

[4]
[5]

[6

—

[7]

[8

—

[9

—

(10]

(11]

[12]

[13]

[14]

[15]
[16]

[17]

(18]

[19]

(20]

[21]

[22]

(23]

Flipy: linear solver. https://pypi.org/project/flipy/. Accessed: 2020-8-9.

Ibm thread and monitor dump analyze for java.
https://www.ibm.com/support/pages/ibm-thread-and-monitor-
dump-analyzer-java-tmda. Accessed: 2020-8-9.

Overview of synchronization primitives. https://docs.
microsoft.com/en-us/dotnet/standard/threading/
overview-of-synchronization-primitives. Accessed:
2020-8-9.

Processor tracing. https://software.intel.com/content/www/
us/en/develop/blogs/processor-tracing.html.

Mohammad Mejbah Ul Alam, Tongping Liu, Guangming Zeng, and
Abdullah Muzahid. Syncperf: Categorizing, detecting, and diagnos-
ing synchronization performance bugs. In Gustavo Alonso, Ricardo
Bianchini, and Marko Vukolic, editors, EuroSys, 2017.

Sebastian Burckhardt, Pravesh Kothari, Madanlal Musuvathi, and San-
tosh Nagarakatte. A randomized scheduler with probabilistic guaran-
tees of finding bugs. In ASPLOS, 2010.

Feng Chen, Traian-Florin Serbanuta, and Grigore Rosu. jpredic-
tor: a predictive runtime analysis tool for java. In Wilhelm Schifer,
Matthew B. Dwyer, and Volker Gruhn, editors, /CSE, 2008.

Victor Chibotaru, Benjamin Bichsel, Veselin Raychev, and Martin
Vechev. Scalable taint specification inference with big code. In Pro-
ceedings of the 40th ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 760-774, 2019.
Michael Chow, David Meisner, Jason Flinn, Daniel Peek, and
Thomas F Wenisch. The mystery machine: End-to-end performance
analysis of large-scale internet services. In 11th {USENIX} Symposium
on Operating Systems Design and Implementation ({OSDI} 14), pages
217-231, 2014.

Florian David, Gael Thomas, Julia Lawall, and Gilles Muller. Continu-
ously measuring critical section pressure with the free-lunch profiler.
ACM SIGPLAN Notices, 49(10):291-307, 2014.

Cormac Flanagan and Stephen N Freund. Fasttrack: efficient and
precise dynamic race detection. ACM Sigplan Notices, 44(6):121-133,
20009.

Cormac Flanagan and Stephen N Freund. The fasttrack2 race detector.
Technical report, Technical report, Williams College, 2017.

Chun-Hung Hsiao, Satish Narayanasamy, Essam Muhammad Idris
Khan, Cristiano L. Pereira, and Gilles A. Pokam. Asyncclock: Scalable
inference of asynchronous event causality. In Yunji Chen, Olivier
Temam, and John Carter, editors, ASPLOS, 2017.

Chun-Hung Hsiao, Cristiano Pereira, Jie Yu, Gilles Pokam, Satish
Narayanasamy, Peter M. Chen, Ziyun Kong, and Jason Flinn. Race
Detection for Event-Driven Mobile Applications. In PLDI, 2014.

Guoliang Jin, Linhai Song, Wei Zhang, Shan Lu, and Ben Liblit.
Automated atomicity-violation fixing. In PLDI, 2011.

Guoliang Jin, Wei Zhang, Dongdong Deng, Ben Liblit, and Shan Lu.
Automated concurrency-bug fixing. In OSDI, 2012.

Horatiu Jula, Daniel Tralamazza, Cristian Zamfir, and George Candea.
Deadlock immunity: Enabling systems to defend against deadlocks. In
0SDI, 2008.

Baris Kasikci, Cristian Zamfir, and George Candea. Data Races vs.
Data Race Bugs: Telling the Difference with Portend. In ASPLOS,
2012.

Guangpu Li, Haopeng Liu, Xianglan Chen, Haryadi S Gunawi, and
Shan Lu. Dfix: automatically fixing timing bugs in distributed systems.
In Proceedings of the 40th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, pages 994-1009, 2019.
Guangpu Li, Shan Lu, Madanlal Musuvathi, Suman Nath, and Rohan
Padhye. Efficient scalable thread-safety-violation detection. In Pro-
ceedings of the 27th ACM Symposium on Operating Systems Principles,
2019.

Jiaxin Li, Yuxi Chen, Haopeng Liu, Shan Lu, Yiming Zhang, Haryadi S
Gunawi, Xiaohui Gu, Xicheng Lu, and Dongsheng Li. Pcatch: auto-
matically detecting performance cascading bugs in cloud systems. In
Proceedings of the Thirteenth EuroSys Conference, pages 1-14, 2018.

Haopeng Liu, Guangpu Li, Jeffrey F Lukman, Jiaxin Li, Shan Lu,
Haryadi S Gunawi, and Chen Tian. Dcatch: Automatically detect-
ing distributed concurrency bugs in cloud systems. ACM SIGARCH
Computer Architecture News, 45(1):677-691, 2017.

Benjamin Livshits, Aditya V Nori, Sriram K Rajamani, and Anindya
Banerjee. Merlin: specification inference for explicit information flow
problems. ACM Sigplan Notices, 44(6):75-86, 2009.

[24]

[25]
[26]
[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

Shan Lu, Joseph Tucek, Feng Qin, and Yuanyuan Zhou. AVIO: De-
tecting Atomicity Violations via Access Interleaving Invariants. In
ASPLOS, 2006.

Brandon Lucia, Joseph Devietti, Karin Strauss, and Luis Ceze. Atom-
Aid: Detecting and surviving atomicity violations. In ISCA, 2008.
Pallavi Maiya, Aditya Kanade, and Rupak Majumdar. Race Detection
for Android Applications. In PLDI, 2014.

Boris Petrov, Martin T. Vechev, Manu Sridharan, and Julian Dolby.
Race detection for web applications. In PLDI, 2012.

Michiel Ronsse and Koenraad De Bosschere. Recplay: A fully in-
tegrated practical record/replay system. ACM Trans. Comput. Syst.,
17(2):133-152, 1999.

Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro,
and Thomas Anderson. Eraser: A dynamic data race detector for
multithreaded programs. ACM TOCS, 1997.

Chen Tian, Vijay Nagarajan, Rajiv Gupta, and Sriraman Tallam. Dy-
namic recognition of synchronization operations for improved data
race detection. In ISSTA, 2008.

Kaushik Veeraraghavan, Dongyoon Lee, Benjamin Wester, Jessica
Ouyang, Peter M. Chen, Jason Flinn, and Satish Narayanasamy. Dou-
bleplay: Parallelizing sequential logging and replay. In ASPLOS, 2011.
Benjamin P. Wood, Luis Ceze, and Dan Grossman. Low-level detection
of language-level data races with lard. In ASPLOS, 2014.

Weiwei Xiong, Soyeon Park, Jiaqi Zhang, Yuanyuan Zhou, and
Zhigiang Ma. Ad hoc synchronization considered harmful. In OSDI,
2010.

Jiagi Zhang, Weiwei Xiong, Yang Liu, Soyeon Park, Yuanyuan Zhou,
and Zhiqiang Ma. Atdetector: improving the accuracy of a commercial
data race detector by identifying address transfer. In Proceedings of
the 44th Annual IEEE/ACM International Symposium on Microarchi-
tecture, pages 206-215, 2011.

Wei Zhang, Junghee Lim, Ramya Olichandran, Joel Scherpelz, Guo-
liang Jin, Shan Lu, and Thomas Reps. ConSeq: Detecting Concurrency
Bugs through Sequential Errors. In ASPLOS, 2011.


https://docs.microsoft.com/en-us/dotnet/standard/threading/overview-of-synchronization-primitives
https://docs.microsoft.com/en-us/dotnet/standard/threading/overview-of-synchronization-primitives
https://docs.microsoft.com/en-us/dotnet/standard/threading/overview-of-synchronization-primitives
https://software.intel.com/content/www/us/en/develop/blogs/processor-tracing.html
https://software.intel.com/content/www/us/en/develop/blogs/processor-tracing.html

	Motivation
	Limitations of the State of the Art
	Key Insights
	Main Artifacts
	Key Results and Contributions
	Why ASPLOS

