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1. Motivation

Field-Programmable Gate Arrays (FPGAs) combine the func-
tional efficiency of hardware with the programmability of
software. They can exceed general-purpose CPU performance
by orders of magnitude [19, 4] and offer lower cost and time to
market than ASICs. In data centers, FPGAs give infrastructure
providers a means to support diverse hardware needs with a
single technology [4].

Virtualization is fundamental to the success of data centers.
It decouples applications from dependences on hardware and
enables economies of scale through consolidation. However, a
standard technique for virtualizing FPGAs has yet to emerge.
There are no widely agreed upon methods for supporting key
primitives such as workload migration (suspending and resum-
ing the execution of a hardware program, or relocating it from
one FPGA to another mid-execution) or multi-tenancy (multi-
plexing multiple hardware programs on a single FPGA). Our
goal is to remove these limitations, enabling FPGAs to realize
their potential as a mainstream accelerator technology.

2. Limitations of the State of the Art

FPGA virtualization is difficult because FPGAs lack a well-
defined interposable application binary interface (ABI) and
state capture mechanisms. The state of an FPGA program is
distributed throughout its reprogrammable fabric in a program-
dependent and hardware-dependent fashion that is inaccessi-
ble to the OS. The only way to suspend and resume execution
is to inefficiently access the entire register state of the device.
Without knowing how programs are compiled for an FPGA,
there is no way to share the FPGA with other programs or
relocate programs between FPGAs mid-execution.

A significant body of work has addressed the problems of
sharing FPGA fabric [5, 3, 8, 24, 14, 13], spatial multiplex-
ing [9, 22, 23, 6], context switch [15, 20], memory virtual-
ization [7, 1, 25, 17], relocation [11], preemption [16], and
interleaved hardware-software task execution [2, 22, 23, 10].
However, most of these approaches use hardware-based vir-
tualization solutions, which partition the device into isolated
regions exposed as a set of smaller fabrics. This approach
enables sharing, but cannot support features like workload
migration. Moreover, it suffers from fabric fragmentation and
underutilization.

One current state-of-the-art solution is AmorphOS [12], an
FPGA runtime which supports cross-program protection and
cross-platform compatibility at very high degrees of multi-
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tenancy. AmorphOS allows hardware programs to adapt to
changes in load and availability by dynamically scaling the
amount of FPGA fabric they consume. AmorphOS can trans-
parently change mappings between user logic and FPGA fab-
ric to increase utilization and avoid fragmentation. However,
AmorphOS delegates the problem of efficient context switch
to the programmer by exposing an interface to manage appli-
cation state. AmorphOS leaves over-subscription and support
for multiple FPGAs completely unsolved.

Another state-of-the-art solution is Cascade [21], the first
JIT compiler for Verilog. Cascade executes hardware pro-
grams in a combination of software simulation and FPGA
fabric to present the illusion of zero-latency hardware com-
pilation. Cascade also applies transformations to the user’s
program to produce code that can trap into the Cascade run-
time at the end of the logical clock tick. These traps allow
the user to run programs which contain unsynthesizable state-
ments (code which would otherwise be restricted to software
simulation) in a way that is consistent with the scheduling
semantics of Verilog, even during hardware execution. How-
ever, Cascade does not support virtualization primitives such
as context switch and migration, and lacks the fine granularity
of control needed to execute unsynthesizable statements with
side-effects which must be resolved mid-clock-cycle.

3. Key Insights

We argue that the right place to support FPGA virtualization
is in a combined compiler/runtime environment. SYNERGY
combines a just-in-time (JIT) compiler for Verilog, canonical
interfaces to OS-managed resources, and an OS-level pro-
tection layer to abstract and isolate shared resources. The
key insight behind SYNERGY is that a compiler can re-write
Verilog code to compensate for the missing FPGA ABI and
explicitly expose application-level state to the OS. The core
technique used by SYNERGY is a static analysis to transform
the user’s code into a distributed-system-like intermediate rep-
resentation (IR) consisting of monadic sub-programs which
can be moved back and forth mid-execution between a soft-
ware interpreter and native FPGA execution. This is possible
because the transformations produce code that can trap to the
software runtime at arbitrary points in time, even mid-clock-
cycle, according to the semantics of the original program.



4. Main Artifacts

SYNERGY extends the Cascade [21] JIT compiler and com-
poses it with the AmorphOS [12] FPGA OS. We measure
SYNERGY in real-world contexts that represent the hetero-
geneity of the data center. We show the ability to suspend
and resume programs running on a cluster of Altera SoCs
and Xilinx FPGAs running on Amazon’s F1 cloud instances,
to transition applications between the two, and to temporally
and spatially multiplex both devices efficiently with strong
OS-level isolation guarantees. This is done without exposing
the architectural differences between the platforms, or requir-
ing extensions to the Verilog language or modifications to the
user’s program.

SYNERGY'’s first contribution is a set of compiler transfor-
mations to produce code that can be interrupted at sub-clock-
tick granularity according to the semantics of the original
program. Compared to Cascade, this allows SYNERGY to
support a large new class of unsynthesizable Verilog, even
while executing in hardware. Traditional Verilog uses unsyn-
thesizable language constructs for testing and debugging in a
simulator, but SYNERGY can also use them to expose inter-
faces to OS-managed resources and to start, stop, and save the
state of a program at any point in its execution. This allows
SYNERGY to perform context switch and workload migration
without hardware support or modifications to Verilog.

SYNERGY'’s second contribution is a new technique for
FPGA multi-tenancy. SYNERGY introduces a hypervisor
layer into the compiler’s runtime which can combine the sub-
program representations from multiple applications by multi-
ple instances of the compiler) into a single hardware program
whose implementation is kept hidden from those instances.
This module is responsible for interleaving asynchronous data
and control requests between each of those instances and the
FPGA. In contrast to hardware-based approaches, manipulat-
ing each instance’s state is straightforward, as the hypervisor
has access to every instance’s source and knows how it is
mapped onto the device.

SYNERGY'’s final contribution is a compiler backend tar-
geting an OS-level protection layer for process isolation, fair
scheduling, and cross-platform compatibility. Recent OS-
FPGA proposals harden vendor shells and export interfaces
for an application to assist the OS with state capture for con-
text switch [12, 18]. A major obstacle to using these systems
is the requirement that the developer implement state capture
and/or quiescence interfaces. SYNERGY satisfies this require-
ment automatically by using static analysis to identify the
set of variables that comprise a program’s state and emitting
code to interact with those interfaces. For applications which
natively support these interfaces, SYNERGY can use that sup-
port to dramatically reduce overhead for context switch and
migration.

5. Key Results and Contributions

We evaluated SYNERGY using a combination of Altera DE10
SoCs and Amazon F1 cloud instances on benchmarks repre-
senting a mixture of batch and streaming computations. Our
experiments show that SYNERGY improves upon Cascade’s
performance. Despite targeting a 5x higher frequency on F1,
implementing more complex program transformations, and
accounting for device frequency overheads, SYNERGY still
achieves a virtual clock frequency [21] within 3 —4 x of native
unvirtualized performance and maintains a reasonable fabric
cost. Moreover, we note that these figures do not represent
a lower-bound, and we expect further engineering to reduce
them considerably. Our evaluation demonstrates SYNERGY'’s
support for:

* Workload Migration. SYNERGY executes a Verilog pro-
gram on one FPGA architecture, suspends it, saves its state,
and resumes its execution and state on a different FPGA
architecture at a later time. SYNERGY also live migrates a
program between two FPGAs.

* Multitenancy. SYNERGY co-schedules multiple programs
on the same FPGA without contention. It also temporally
multiplexes off-device IO as programs contend for it.

¢ Automated Quiescence Management. SYNERGY uses
programer annotations to reduce captured state by up to
99%, freeing up fabric for use by other applications.

6. Why ASPLOS?

This paper touches on all three facets of the ASPLOS char-
ter. It explores techniques for virtualizing FPGAs (AS) using
techniques that rely heavily on compiler-driven transforma-
tions and language-level abstractions (PL) as well as OS-level
protection, resource-management, and interfaces.

7. Citation

SYNERGY addressed a long-standing challenge in reconfig-
urable computing: how to virtualize FPGAs with full support
for critical features like suspend/resume, workload migration,
context switch, and multi-tenancy. In contrast to a multitude of
previous solutions, which focused on partitioning hardware, in-
troducing canonical interfaces, and using hardware-supported
state capture primitives, SYNERGY recast the problem as a
software challenge. Focusing on the compiler and runtime en-
abled SYNERGY to use code transformations to automatically
introduce primitives and interfaces whose absence made FPGA
virtualization difficult. SYNERGY transformed Verilog pro-
grams so they could yield control to software at sub-clock-tick
granularity according to the semantics of the original program,
providing efficient support for core virtualization primitives:
suspend and resume, program migration, and spatial/temporal
multiplexing, on hardware which was available in 2020.
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