Compiler-Driven FPGA Virtualization with SYNERGY
Extended Abstract

Joshua Landgraf! Tiffany Yang! Will Lin'

'The University of Texas at Austin

1. Motivation

Field-Programmable Gate Arrays (FPGAs) combine the func-
tional efficiency of hardware with the programmability of
software. They can exceed general-purpose CPU performance
by orders of magnitude [19, 4] and offer lower cost and time to
market than ASICs. In data centers, FPGAs give infrastructure
providers a means to support diverse hardware needs with a
single technology [4].

Virtualization is fundamental to the success of data centers.
It decouples applications from dependences on hardware and
enables economies of scale through consolidation. However, a
standard technique for virtualizing FPGAs has yet to emerge.
There are no widely agreed upon methods for supporting key
primitives such as workload migration (suspending and resum-
ing the execution of a hardware program, or relocating it from
one FPGA to another mid-execution) or multi-tenancy (multi-
plexing multiple hardware programs on a single FPGA). Our
goal is to remove these limitations, enabling FPGAs to realize
their potential as a mainstream accelerator technology.

2. Limitations of the State of the Art

FPGA virtualization is difficult because FPGAs lack a well-
defined interposable application binary interface (ABI) and
state capture mechanisms. The state of an FPGA program is
distributed throughout its reprogrammable fabric in a program-
dependent and hardware-dependent fashion that is inaccessi-
ble to the OS. The only way to suspend and resume execution
is to inefficiently access the entire register state of the device.
Without knowing how programs are compiled for an FPGA,
there is no way to share the FPGA with other programs or
relocate programs between FPGAs mid-execution.

A significant body of work has addressed the problems of
sharing FPGA fabric [5, 3, 8, 24, 14, 13], spatial multiplex-
ing [9, 22, 23, 6], context switch [15, 20], memory virtual-
ization [7, 1, 25, 17], relocation [11], preemption [16], and
interleaved hardware-software task execution [2, 22, 23, 10].
However, most of these approaches use hardware-based vir-
tualization solutions, which partition the device into isolated
regions exposed as a set of smaller fabrics. This approach
enables sharing, but cannot support features like workload
migration. Moreover, it suffers from fabric fragmentation and
underutilization.

One current state-of-the-art solution is AmorphOS [12], an
FPGA runtime which supports cross-program protection and
cross-platform compatibility at very high degrees of multi-

2V Mware Research

Eric Schkufza®
4 Amazon

Christopher J. Rossbach!?3
3Katana Graph

tenancy. AmorphOS allows hardware programs to adapt to
changes in load and availability by dynamically scaling the
amount of FPGA fabric they consume. AmorphOS can trans-
parently change mappings between user logic and FPGA fab-
ric to increase utilization and avoid fragmentation. However,
AmorphOS delegates the problem of efficient context switch
to the programmer by exposing an interface to manage appli-
cation state. AmorphOS leaves over-subscription and support
for multiple FPGAs completely unsolved.

Another state-of-the-art solution is Cascade [21], the first
JIT compiler for Verilog. Cascade executes hardware pro-
grams in a combination of software simulation and FPGA
fabric to present the illusion of zero-latency hardware com-
pilation. Cascade also applies transformations to the user’s
program to produce code that can trap into the Cascade run-
time at the end of the logical clock tick. These traps allow
the user to run programs which contain unsynthesizable state-
ments (code which would otherwise be restricted to software
simulation) in a way that is consistent with the scheduling
semantics of Verilog, even during hardware execution. How-
ever, Cascade does not support virtualization primitives such
as context switch and migration, and lacks the fine granularity
of control needed to execute unsynthesizable statements with
side-effects which must be resolved mid-clock-cycle.

3. Key Insights

We argue that the right place to support FPGA virtualization
is in a combined compiler/runtime environment. SYNERGY
combines a just-in-time (JIT) compiler for Verilog, canonical
interfaces to OS-managed resources, and an OS-level pro-
tection layer to abstract and isolate shared resources. The
key insight behind SYNERGY is that a compiler can re-write
Verilog code to compensate for the missing FPGA ABI and
explicitly expose application-level state to the OS. The core
technique used by SYNERGY is a static analysis to transform
the user’s code into a distributed-system-like intermediate rep-
resentation (IR) consisting of monadic sub-programs which
can be moved back and forth mid-execution between a soft-
ware interpreter and native FPGA execution. This is possible
because the transformations produce code that can trap to the
software runtime at arbitrary points in time, even mid-clock-
cycle, according to the semantics of the original program.

4. Main Artifacts

SYNERGY extends the Cascade [21] JIT compiler and com-
poses it with the AmorphOS [12] FPGA OS. We measure
SYNERGY in real-world contexts that represent the hetero-
geneity of the data center. We show the ability to suspend
and resume programs running on a cluster of Altera SoCs
and Xilinx FPGAs running on Amazon’s F1 cloud instances,
to transition applications between the two, and to temporally
and spatially multiplex both devices efficiently with strong
OS-level isolation guarantees. This is done without exposing
the architectural differences between the platforms, or requir-
ing extensions to the Verilog language or modifications to the
user’s program.

SYNERGY'’s first contribution is a set of compiler transfor-
mations to produce code that can be interrupted at sub-clock-
tick granularity according to the semantics of the original
program. Compared to Cascade, this allows SYNERGY to
support a large new class of unsynthesizable Verilog, even
while executing in hardware. Traditional Verilog uses unsyn-
thesizable language constructs for testing and debugging in a
simulator, but SYNERGY can also use them to expose inter-
faces to OS-managed resources and to start, stop, and save the
state of a program at any point in its execution. This allows
SYNERGY to perform context switch and workload migration
without hardware support or modifications to Verilog.

SYNERGY'’s second contribution is a new technique for
FPGA multi-tenancy. SYNERGY introduces a hypervisor
layer into the compiler’s runtime which can combine the sub-
program representations from multiple applications by multi-
ple instances of the compiler) into a single hardware program
whose implementation is kept hidden from those instances.
This module is responsible for interleaving asynchronous data
and control requests between each of those instances and the
FPGA. In contrast to hardware-based approaches, manipulat-
ing each instance’s state is straightforward, as the hypervisor
has access to every instance’s source and knows how it is
mapped onto the device.

SYNERGY'’s final contribution is a compiler backend tar-
geting an OS-level protection layer for process isolation, fair
scheduling, and cross-platform compatibility. Recent OS-
FPGA proposals harden vendor shells and export interfaces
for an application to assist the OS with state capture for con-
text switch [12, 18]. A major obstacle to using these systems
is the requirement that the developer implement state capture
and/or quiescence interfaces. SYNERGY satisfies this require-
ment automatically by using static analysis to identify the
set of variables that comprise a program’s state and emitting
code to interact with those interfaces. For applications which
natively support these interfaces, SYNERGY can use that sup-
port to dramatically reduce overhead for context switch and
migration.

5. Key Results and Contributions

We evaluated SYNERGY using a combination of Altera DE10
SoCs and Amazon F1 cloud instances on benchmarks repre-
senting a mixture of batch and streaming computations. Our
experiments show that SYNERGY improves upon Cascade’s
performance. Despite targeting a 5x higher frequency on F1,
implementing more complex program transformations, and
accounting for device frequency overheads, SYNERGY still
achieves a virtual clock frequency [21] within 3 —4 x of native
unvirtualized performance and maintains a reasonable fabric
cost. Moreover, we note that these figures do not represent
a lower-bound, and we expect further engineering to reduce
them considerably. Our evaluation demonstrates SYNERGY'’s
support for:

* Workload Migration. SYNERGY executes a Verilog pro-
gram on one FPGA architecture, suspends it, saves its state,
and resumes its execution and state on a different FPGA
architecture at a later time. SYNERGY also live migrates a
program between two FPGAs.

* Multitenancy. SYNERGY co-schedules multiple programs
on the same FPGA without contention. It also temporally
multiplexes off-device IO as programs contend for it.

¢ Automated Quiescence Management. SYNERGY uses
programer annotations to reduce captured state by up to
99%, freeing up fabric for use by other applications.

6. Why ASPLOS?

This paper touches on all three facets of the ASPLOS char-
ter. It explores techniques for virtualizing FPGAs (AS) using
techniques that rely heavily on compiler-driven transforma-
tions and language-level abstractions (PL) as well as OS-level
protection, resource-management, and interfaces.

7. Citation

SYNERGY addressed a long-standing challenge in reconfig-
urable computing: how to virtualize FPGAs with full support
for critical features like suspend/resume, workload migration,
context switch, and multi-tenancy. In contrast to a multitude of
previous solutions, which focused on partitioning hardware, in-
troducing canonical interfaces, and using hardware-supported
state capture primitives, SYNERGY recast the problem as a
software challenge. Focusing on the compiler and runtime en-
abled SYNERGY to use code transformations to automatically
introduce primitives and interfaces whose absence made FPGA
virtualization difficult. SYNERGY transformed Verilog pro-
grams so they could yield control to software at sub-clock-tick
granularity according to the semantics of the original program,
providing efficient support for core virtualization primitives:
suspend and resume, program migration, and spatial/temporal
multiplexing, on hardware which was available in 2020.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

Michael Adler, Kermin E. Fleming, Angshuman Parashar, Michael
Pellauer, and Joel Emer. Leap Scratchpads: Automatic Memory and
Cache Management for Reconfigurable Logic. In Proceedings of the
19th ACM/SIGDA International Symposium on Field Programmable
Gate Arrays, FPGA 11, pages 25-28, New York, NY, USA, 2011.
ACM.

Gordon J. Brebner. A Virtual Hardware Operating System for the
Xilinx XC6200. In Proceedings of the 6th International Workshop
on Field-Programmable Logic, Smart Applications, New Paradigms
and Compilers, FPL ’96, pages 327-336, London, UK, UK, 1996.
Springer-Verlag.

Stuart Byma, J. Gregory Steffan, Hadi Bannazadeh, Alberto Leon
Garcia, and Paul Chow. FPGAs in the Cloud: Booting Virtualized
Hardware Accelerators with OpenStack. In Proceedings of the 2014
IEEE 22Nd International Symposium on Field-Programmable Custom
Computing Machines, FCCM ’ 14, pages 109-116, Washington, DC,
USA, 2014. IEEE Computer Society.

Adrian Caulfield, Eric Chung, Andrew Putnam, Hari Angepat, Jeremy
Fowers, Michael Haselman, Stephen Heil, Matt Humphrey, Puneet
Kaur, Joo-Young Kim, Daniel Lo, Todd Massengill, Kalin Ovtcharov,
Michael Papamichael, Lisa Woods, Sitaram Lanka, Derek Chiou, and
Doug Burger. A Cloud-Scale Acceleration Architecture. In Pro-
ceedings of the 49th Annual IEEE/ACM International Symposium on
Microarchitecture. IEEE Computer Society, October 2016.

Fei Chen, Yi Shan, Yu Zhang, Yu Wang, Hubertus Franke, Xiaotao
Chang, and Kun Wang. Enabling FPGAs in the Cloud. In Proceedings
of the 11th ACM Conference on Computing Frontiers, CF *14, pages
3:1-3:10, New York, NY, USA, 2014. ACM.

Liang Chen, Thomas Marconi, and Tulika Mitra. Online Scheduling
for Multi-core Shared Reconfigurable Fabric. In Proceedings of the
Conference on Design, Automation and Test in Europe, DATE *12,
pages 582-585, San Jose, CA, USA, 2012. EDA Consortium.

Eric S. Chung, James C. Hoe, and Ken Mai. CoRAM: An In-
fabric Memory Architecture for FPGA-based Computing. In Pro-
ceedings of the 19th ACM/SIGDA International Symposium on Field
Programmable Gate Arrays, FPGA *11, pages 97-106, New York, NY,
USA, 2011. ACM.

Suhaib A. Fahmy, Kizheppatt Vipin, and Shanker Shreejith. Virtualized
FPGA Accelerators for Efficient Cloud Computing. In Proceedings
of the 2015 IEEE 7th International Conference on Cloud Computing
Technology and Science (CloudCom), CLOUDCOM ’15, pages 430—
435, Washington, DC, USA, 2015. IEEE Computer Society.

W. Fu and K. Compton. Scheduling intervals for reconfigurable com-
puting. In Field-Programmable Custom Computing Machines, 2008.
FCCM °08. 16th International Symposium on, pages 87-96, April
2008.

Ivan Gonzalez, Sergio Lopez-Buedo, Gustavo Sutter, Diego Sanchez-
Roman, Francisco J. Gomez-Arribas, and Javier Aracil. Virtualization
of Reconfigurable Coprocessors in HPRC Systems with Multicore
Architecture. J. Syst. Archit., 58(6-7):247-256, June 2012.

H. Kalte and M. Porrmann. Context saving and restoring for multi-
tasking in reconfigurable systems. In Field Programmable Logic and
Applications, 2005. International Conference on, pages 223-228, Aug
2005.

Ahmed Khawaja, Joshua Landgraf, Rohith Prakash, Michael Wei,
Eric Schkufza, and Christopher J Rossbach. Sharing, protection,
and compatibility for reconfigurable fabric with amorphos. In /3th
{USENIX} Symposium on Operating Systems Design and Implementa-
tion ({OSDI} 18), pages 107-127, 2018.

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

O. Knodel, P. Lehmann, and R. G. Spallek. RC3E: Reconfigurable
Accelerators in Data Centres and Their Provision by Adapted Ser-
vice Models. In 2016 IEEE 9th International Conference on Cloud
Computing (CLOUD), pages 19-26, June 2016.

Oliver Knodel and Rainer G. Spallek. RC3E: Provision and Manage-
ment of Reconfigurable Hardware Accelerators in a Cloud Environ-
ment. CoRR, abs/1508.06843, 2015.

Trong-Yen Lee, Che-Cheng Hu, Li-Wen Lai, and Chia-Chun Tsai.
Hardware context-switch methodology for dynamically partially recon-
figurable systems. J. Inf. Sci. Eng., 26:1289-1305, 2010.

L. Levinson, R. Manner, M. Sessler, and H. Simmler. Preemptive
multitasking on fpgas. In Field-Programmable Custom Computing
Machines, 2000 IEEE Symposium on, pages 301-302, 2000.

Enno Liibbers and Marco Platzner. ReconOS: Multithreaded Program-
ming for Reconfigurable Computers. ACM Trans. Embed. Comput.
Syst., 9(1):8:1-8:33, October 2009.

Jiacheng Ma, Gefei Zuo, Kevin Loughlin, Xiaohe Cheng, Yanqgiang
Liu, Abel Mulugeta Eneyew, Zhengwei Qi, and Baris Kasikci. A
hypervisor for shared-memory fpga platforms. In Proceedings of the
Twenty-Fifth International Conference on Architectural Support for
Programming Languages and Operating Systems, 2020.

Andrew Putnam, Adrian Caulfield, Eric Chung, Derek Chiou, Kypros
Constantinides, John Demme, Hadi Esmaeilzadeh, Jeremy Fowers,
Gopi Prashanth Gopal, Jan Gray, Michael Haselman, Scott Hauck,
Stephen Heil, Amir Hormati, Joo-Young Kim, Sitaram Lanka, Jim
Larus, Eric Peterson, Simon Pope, Aaron Smith, Jason Thong,
Phillip Yi Xiao, and Doug Burger. A Reconfigurable Fabric for Accel-
erating Large-Scale Datacenter Services. In 41st Annual International
Symposium on Computer Architecture (ISCA), June 2014.

Kyle Rupnow, Wenyin Fu, and Katherine Compton. Block, drop or
roll(back): Alternative preemption methods for RH multi-tasking. In
FCCM 2009, 17th [EEE Symposium on Field Programmable Custom
Computing Machines, Napa, California, USA, 5-7 April 2009, Pro-
ceedings, pages 63-70, 2009.

Eric Schkufza, Michael Wei, and Christopher J. Rossbach. Just-in-
time compilation for verilog: A new technique for improving the
FPGA programming experience. In Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS 2019, Providence, RI,
USA, April 13-17, 2019, pages 271-286, 2019.

C. Steiger, H. Walder, and M. Platzner. Operating systems for recon-
figurable embedded platforms: online scheduling of real-time tasks.
IEEE Transactions on Computers, 53(11):1393-1407, Nov 2004.

G. Wassi, Mohamed El Amine Benkhelifa, G. Lawday, F. Verdier, and
S. Garcia. Multi-shape tasks scheduling for online multitasking on
FPGAs. In Reconfigurable and Communication-Centric Systems-on-
Chip (ReCoSoC), 2014 9th International Symposium on, pages 1-7,
May 2014.

Jagath Weerasinghe, Frangois Abel, Christoph Hagleitner, and Andreas
Herkersdorf. Enabling FPGAs in Hyperscale Data Centers. In 2015
1IEEE 12th Intl Conf on Ubiquitous Intelligence and Computing and
2015 IEEE 12th Intl Conf on Autonomic and Trusted Computing and
2015 IEEE 15th Intl Conf on Scalable Computing and Communications
and Its Associated Workshops (UIC-ATC-ScalCom), Beijing, China,
August 10-14, 2015, pages 1078-1086, 2015.

Felix Winterstein, Kermin Fleming, Hsin-Jung Yang, Samuel Bayliss,
and George Constantinides. Matchup: Memory abstractions for heap
manipulating programs. In Proceedings of the 2015 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, FPGA
’15, pages 136-145, New York, NY, USA, 2015. ACM.

	Motivation
	Limitations of the State of the Art
	Key Insights
	Main Artifacts
	Key Results and Contributions
	Why ASPLOS?
	Citation

