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1 INTRODUCTION
It is critical that our hardware behaves as we expect it to. Hard-
ware verification and testing is extensive and involves a variety of
techniques, including functional tests, quality control, load tests,
input/output validation, and simulation. Despite the thoroughness
of hardware verification, hardware bugs are pervasive and diffi-
cult to detect with standard verification techniques alone. These
bugs range in severity from revealing internal testing infrastructure
[3] to privileged information leaks such as Meltdown and Spectre,
among others [1, 6, 7].

Formal verification has been touted as a way to reason about
the correctness of hardware across every possible execution trace.
The standard way of verifying a software program is to develop
a mathematical model for the source language of the program,
such as with a formal semantics, as well as stating correctness
or safety properties mathematically in terms of the semantics of
the source language. Proving these properties can proceed either
by pen-and-paper proof or with formal verification tools, such as
model checkers or proof assistants [2, 5].

Unfortunately, these techniques do not translate easily to for-
mally verifying hardware. Although formal verification is a vibrant
area of research, its adoption in other domains such as computer
architecture remains limited due to the hefty overhead of becoming
familiar with the mathematics and frameworks for a given tool.
Given the inherent complexity of hardware, simply writing down
the formal properties one wants to prove about hardware requires
experts in both computer architecture and formal verification.

Perhaps most critically, formal verification is brittle: even small
changes in source code or formal specification often necessitate
adjustments to proofs, oftentimes nontrivial ones. Work to make
this aspect of formal verification less arduous is underway, but the
problem remains an active area of research [10]. The pace of formal
verification is simply not fast or adaptable enough to keep up with
the pace of hardware design.

2 LET LARGE LANGUAGE MODELS HELP!
The traditional hardware design flow involves iterative verification
and testing at each stage of the design process, from logic design to
post-silicon validation. This process is extremely thorough, but it
is still possible for buggy hardware to pass traditional verification.

Integrating formal verification into hardware design flows typi-
cally involves developing a mathematical specification of the hard-
ware design. Once the desired properties to prove are expressed
in terms of that specification, the proof proceeds with the aid of a
formal verification tool, such as a proof assistant or a model checker.
However, this is generally quite slow and labor-intensive, adding
more burdens to an already extensive process.

Figure 1: Traditional hardware design flow.

Figure 2: Formal verification in hardware design.

If we want to see formal verification integrated in the hardware
design process, we must make the formal verification of hardware
easier. Perhaps our solution lies outside of typical verification meth-
ods. In particular, we have entered the age of large language models
(LLMs)— they seem to have the speed and flexibility that we need
in our efforts to formally verify hardware.

Here’s a wacky idea: let’s just tell an LLM what properties we
want to prove about our hardware, and let it take care of the formal
specification of our hardware, statements of those properties, and
the proofs of them with respect to the specification of the hardware
implementation.

Figure 3: LLMs handling aspects of formal verification.
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3 USING CHATGPT TO "VERIFY" HARDWARE
To assess the feasibility of this idea, we tested it out with ChatGPT.
ChatGPT is an LLM which is designed to interact with users in
a conversational matter [9]. ChatGPT has been used widely for a
variety of applications, from writing cover letters to code snippets
[4, 11], with overall positive results.

We presented ChatGPT with a Verilog implementation of a cache
and RAM system, taken from GitHub [8]. We then asked it to
respond to the following prompt:

Can you give me an LTL formula that ensures that a
user always reads the correct data from the cache, as
well as a proof of that formula?

We chose this query as it seems like it could feasibly be asked by
a hardware designer with limited knowledge of formal verification
methods.

ChatGPT provided an LTL formula along with an accompanying
explanation that initially seemed satisfactory. Namely, it stated that
the cache would only be able perform a read operation if there is
data present at the index being read from in the cache and that
the tag in the read instruction’s address matched the tag of the
corresponding index in the cache.

Figure 4: A partial statement of cache correctness.

Upon closer inspection, the initial formula ChatGPT produced
makes no promises about the value being read from the cache and
whether it corresponds to the value present in memory. When
prompted to incorporate this into the correctness statement, Chat-
GPT was able to adjust its formula and update its explanation to
address consistency between the cache and memory.

Figure 5: A more complete statement of cache correctness.

When we requested a proof of the cache correctness statement,
ChatGPT obliged, albeit informally. This, too, seemed mostly ac-
curate at first glance, although the level of detail was certainly
insufficient. However, ChatGPT incorrectly analyzed a conditional
guard and asserted that the body is executed under the negation of
the guard, rendering the reasoning invalid. When asked to remedy
this obvious error, the tool hung.

Figure 6: An incorrect proof.

Figure 7: Failure to amend proof.

Although ChatGPT was unable to prove anything about the
cache and RAM system, it was able to provide an initial correctness
statement and revise it according to the properties we wanted to
prove. We didn’t need to write any LTL formulas ourselves, and it
was fairly easy to inspect the generated formula and determine the
changes we needed to make to make it work. LLMs seem promising
as a first step towards aiding hardware designers who may be unfa-
miliar with formal verification in designing formal specifications.

4 FUTUREWORK
This experiment was conducted with GPT-3, as it is available to
the general public. We also asked GPT-4 to solve the same prompt
regarding the correctness of a cache and RAM system implemented
in Verilog. However, the results were about as good as those with
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GPT-3. Future work might use an LLM that is trained on a hardware
correctness and formal verification knowledge base. In particular,
additional training on Verilog and Coq code samples might enable
our hardware verification LLM to actually generate hardware or
verification code, just as ChatGPT can generate Python or Java code
today.

The "proofs" that ChatGPT yielded during this experiment were
mostly in English, and had some fundamental errors, such as miss-
ing a case in a case analysis or failing to prove an induction hypoth-
esis. Fine-tuning a verification LLM to better work with mathemat-
ical language, in particular for proofs of correctness and safety of
hardware, may yield better results on the the proof-writing side of
this endeavor.

Of course, to actualize both of these future directions, we would
need to work closely with collaborators who have considerable
experience with designing and training LLMs.

Once we have an LLM that is suited for the formal verification of
hardware, it would be interesting to gauge its utility by conducting a
user study with hardware designers where they attempt to develop
a formal specification of their designs along with formal statements
of the properties they want to verify.

5 CONCLUSION
Whether working with theorem provers or model checkers, the
hardest part of using formal verification tools is writing down
the specification of the source code targeted for verification as
well as nailing down how to state and prove properties about that
code. Beyond ensuring that the specification matches the intended
behavior of the source code, there may also be idiomatic ways of
expressing the specification that require a deep understanding of a
given formal verification tool.

While formal verification infrastructure for hardware has ad-
vanced considerably in recent years, it is oftentimes difficult for
anyone but a formal verification expert to navigate these frame-
works with ease. Conversely, formal verification experts may lack
the domain knowledge needed to faithfully represent source code
in a specification or its correctness properties.

Large language models may not be able to generate perfect spec-
ifications or correctness statements. They certainly can’t prove
anything (yet!). Nevertheless, producing slightly incorrect formal
specifications and properties quickly makes it easier for hardware
designers to iterate on them efficiently. In short, being fast and
wrong may be good enough to make formally verifying hardware
just a little bit easier.
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